tumor tissues
Recently Published Documents





2022 ◽  
Vol 12 (4) ◽  
pp. 763-769
Liang Yu ◽  
Sheng Zhang ◽  
Wei He

microRNA-136 can inhibit the proliferating activity of malignant cells and also participate in chemotherapy resistance of colorectal cancer via modulating HDAC1. This study assessed miR-136’s effect on NSCLC cell proliferation and underlying mechanisms. Tumor tissues and paracancerous tissues from NSCLC patients were collected to measure miR-136 and HDAC1 level. Cells were transfected with miR-136-mimics, miR-136-inhibitors or miR-136 mimics+HDAC1-OE followed by analysis of cell viability and apoptosis by CCK-8 method and flow cytometry, phosphorylation of Jak2/STAT3 by western blot. miR-136 was significantly downregulated in tumor tissues and NSCLC cells, accompanied by upregulated HDAC1. miR-136 overexpression suppressed HDAC1 expression, retarded phosphorylation and activation of Jak2/STAT3 signaling, reduced NSCLC cell viability and enhanced apoptosis. In addition, co-transfection of miR-136-mimics and HDAC1-OE reversed the inhibitory effects of miR-136 on NSCLC cells. In conclusion, miR-136 is reduced and HDAC1 is increased in NSCLC and miR-136 overexpression inhibited NSCLC cell proliferation and increased apoptosis possibly through regulating HDAC1/Jak2/STAT3 signal pathway, indicating that miR-136 might be a novel target for the treatment of NSCLC.

2022 ◽  
Vol 12 (5) ◽  
pp. 996-1001
Neng Jiang ◽  
Shunfu Zhu ◽  
Jianjun Zhu

Objective: Suppressors of cytokine signaling 3 (SOCS3) negatively regulates JAK-STAT signaling. Bioinformatics analysis showed a targeted relationship between miR-221 and SOCS3 mRNA 3′-UTR. This study investigated whether miR-221 regulates SOCS3 expression and affects thyroid cancer cells. Methods: Dual-luciferase reporter gene experiments verified the relationship between miR-221 and SOCS3. The tumor tissues and adjacent tissues of patients with thyroid cancer were collected to detect miR-221 and SOCS3 level. Thyroid cancer cell line KTC-1 cells were assigned into miR-NC group and miR-221 inhibitor group followed by analysis of SOCS3, p-JAK2, and p-STAT3 level by Real-time PCR, cell apoptosis and cell proliferation by flow cytometry and cell invasion by Transwell assay. Results: Compared with adjacent tissues, miR-221 level in tumor tissues was increased, and SCOS3 mRNA level was decreased. There was a targeted relationship between miR-221 and SOCS3 mRNA. MiR-221 level in KTC-1 and TPC-1 cells was increased, while SOCS3 mRNA level was decreased. MiR-221 inhibitor can significantly upregulate SOCS3 mRNA and protein in KTC-1 cells, reduce the expression of p-JAK2, p-STAT3 protein, increase cell apoptosis, and reduce cell proliferation and invasion. Conclusion: The increased miR-221 and decreased SOCS3 expression are related to thyroid cancer pathogenesis. MiR-221 can inhibit the expression of SOCS3, affect JAK-STAT signaling activity, and regulate the proliferation and apoptosis of thyroid cancer cells.

2022 ◽  
Yu Sun ◽  
Jun Zhao

Abstract Background: Cancer is the leading cause of death in the world. The mechanism is not fully elucidated and the therapeutic effect is also unsatisfactory. In our study, we aim to find new target gene in pan-cancer.Methods: Differentially expressed genes (DEGs) was screened out in various types of cancers from GEO database. The expression of DEG (TCEAL2) in tumor cell lines, normal tissues and tumor tissues was calculated. Then the clinical characteristics, DNA methylation, tumor infiltration and gene enrichment of TCEAL2 was studied. Results: TCEAL2 expressions were down-regulated in most cancers. Its expression and methylation were positively or negatively associated with prognosis in different cancers. The tumor infiltration results revealed that TCEAL2 was significantly related with many immune cells especially NK cells and immune-related genes in majority cancers. Furthermore, tau protein and tubulin binding were involved in the molecular function mechanisms of TCEAL2. Conclusion: TCEAL2 may be a novel prognostic marker in different cancers and may affect tumor through immune infiltration.

2022 ◽  
pp. 088532822110658
Keying Xue ◽  
Bingqing Luo ◽  
Xiaoqing Li ◽  
Weixian Deng ◽  
Chunyan Zeng ◽  

This study was designed to investigate the feasibility of genetic testing using circulating tumor cells (CTCs) instead of tumor tissues in lung adenocarcinoma to break through its limitation. Separation system for epithelial cell adhesion molecule (EpCAM), epidermal growth factor receptor (EGFR), and Vimentin expressing CTCs was constructed and used to capture CTCs in the blood samples of 57 patients with lung adenocarcinoma. Genetic mutations of genes involved in targeted therapies were detected by next-generation sequencing (NGS) in tissues from these patients. Blood CTC samples with the gene mutations identified by tissue-NGS were selected and corresponding gene mutations were detected by Sanger sequencing. The specificity of the CTC separation system was 95.48% and the sensitivity was 90.85%. The average number of CTCs in the blood of patients with lung adenocarcinoma was 12.47/7.5 mL. Comparison of the tissue-NGS with the CTC-Sanger sequencing showed that the consistencies of genetic mutations of EGFR ( n = 24), KRAS ( n = 9), TP53 ( n = 19), BRAF ( n = 1), ERBB2 ( n = 2), and PIK3CA ( n = 3) were 92.31%, 75.00%, 86.36%, 50.00%, 66.67%, and 75.00%, with an overall consistency of 84.06%. The CTC separation system established in this study shows high specificity and sensitivity. CTCs can be used as a suitable alternative to tumor tissues that are difficult to obtain in clinical practice and overcome the difficulties in tumor tissue collection, which is of significance in guiding clinical medication and individualized treatment with significant clinical application value in terms of genetic testing for targeted therapies in tumor treatment.

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 193
Taotao Huo ◽  
Wenshuai Li ◽  
Dong Liang ◽  
Rongqin Huang

An ideal cancer diagnostic probe should possess precise tumor-targeted accumulation with negligible sojourn in normal tissues. Herein, tumor cell-derived carbon nanodots (C-CNDU87 and C-CNDHepG2) about 3~7 nm were prepared by a solvothermal method with stable fluorescence and negligible cytotoxicity. More interestingly, due to the differences in gene expression of cancers, C-CND structurally mimicked the corresponding precursors during carbonization in which carbon nanodots were functionalized with α-amino and carboxyl groups with different densities on their edges. With inherent homology and homing effect, C-CND were highly enriched in precursor tumor tissues. Mechanistic studies showed that under the mediation of the original configuration of α-amino and carboxyl groups, C-CND specifically bound to the large neutral amino acid transporter 1 (LAT1, overexpressed in cancer cells), achieving specific tumor fluorescence imaging. This work provided a new vision about tumor cell architecture-mimicked carbon nanodots for tumor-targeted fluorescence imaging.

2022 ◽  
Vol 10 (2) ◽  
pp. 469-476
Bing Ma ◽  
Xiao-Tian Huang ◽  
Gui-Jun Zou ◽  
Wen-Yu Hou ◽  
Xiao-Hui Du

2022 ◽  
Vol 29 ◽  
Sebastian M. Klein ◽  
Maria Bozko ◽  
Astrid Toennießen ◽  
Nisar P. Malek ◽  
Przemyslaw Bozko

Background: Ovarian cancer is one of the most aggressive types of gynecologic cancers. Many patients have a relapse within two years after diagnosis and subsequent therapy. Among different genetic changes generally believed to be important for the development of cancer, TP53 is the most common mutation in the case of ovarian tumors. Objective: Our work aims to compare the outcomes of different comparisons based on the overall survival of ovarian cancer patients, determination of TP53 status, and amount of p53 protein in tumor tissues. Methods: We analyzed and compared a collective of 436 ovarian patient’s data. Extracted data include TP53 mutation status, p53 protein level, and information on the overall survival. Values for p53 protein level in dependence of TP53 mutation status were compared using the Independent-Samples t-Test. Survival analyses were displayed by Kaplan-Meier plots, using the log-rank test to check for statistical significance. Results: We have not found any statistically significant correlations between determination of TP53 status, amount of p53 protein in tumor tissues, and overall survival of ovarian cancer patients. Conclusion: In ovarian tumors both determination of TP53 status as well as p53 protein amount has only limited diagnostic importance.

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Jiang Yang ◽  
Mei Yang ◽  
Huabing Lv ◽  
Min Zhou ◽  
Xiaogang Mao ◽  

Cervical cancer (CC) is one of the most common malignancies in females, with high prevalence and mortality globally. Despite advances in diagnosis and therapeutic strategies developed in recent years, CC is still a major health burden worldwide. The molecular mechanisms underlying the development of CC need to be understood. In this study, we aimed to demonstrate the role of lncRNA SNHG15 in CC progression. Using qRT-PCR, we determined that lncRNA SNHG15 is highly expressed in CC tumor tissues and cells. lncRNA SNHG15 knockdown also reduces the tumorigenic properties of CC in vitro, as determined using the MTT, EdU, flow cytometry, and transwell assays. Using bioinformatics analysis, RNA pull-down, ChIP, and luciferase reporter assays, we verified the molecular mechanisms of lncRNA SNHG15 in CC progression and found that lncRNA SNHG15 expression in CC cells is transcriptionally regulated by SOX12; moreover, lncRNA SNHG15 promotes CC progression via the miR-4735-3p/HIF1a axis. This study can provide a potential target for CC diagnosis or therapeutic strategies in the future.

2022 ◽  
Vol 23 (2) ◽  
pp. 793
Souvik Ghatak ◽  
Syrina F. Mehrabi ◽  
Lubna M. Mehdawi ◽  
Shakti Ranjan Satapathy ◽  
Anita Sjölander

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The current TNM (Tumor, Node, and Metastasis) classification approach is suboptimal in determining the prognosis of CRC patients. The prognosis for CRC is affected by a variety of features that are present at the initial diagnosis. Herein, we performed a systematic exploration and established a novel five-panel gene signature as a prognostic and early diagnosis biomarker after performing differential gene expression analyses in five independent in silico CRCs cohort and independently validating it in one clinical cohort, using immunohistochemistry. Four genes (BDNF, PTGS2, GSK3B, and CTNNB1) were significantly upregulated and one gene (HPGD) was significantly downregulated in primary tumor tissues compared with adjacent normal tissues throughout all the five in silico datasets. The univariate CoxPH analysis yielded a five-gene signature that accurately predicted overall survival (OS) and recurrence-free survival (RFS) in the in silico training (AUC = 0.73 and 0.69, respectively) and one independent in silico validation cohort (AUC = 0.69 and 0.74, respectively). This five-gene signature demonstrated significant associations with poor OS in independent clinical validation cohorts of colon cancer (CC) patients (AUC = 0.82). Intriguingly, a risk stratification model comprising of the five-gene signature together with TNM stage and gender status achieved an even superior AUC of 0.89 in the clinical cohorts. On the other hand, the circulating mRNA expression of the upregulated four-gene signature achieved a robust AUC = 0.83 with high sensitivity and specificity as a diagnosis marker in plasma from CRC patients. We have identified a novel, five-gene signature as an independent predictor of OS, which in combination with TNM stage and gender offers an easy-to-translate and facile assay for the personalized risk-assessment in CRC patients.

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 53
Vanessa Neto ◽  
Sara Esteves-Ferreira ◽  
Isabel Inácio ◽  
Márcia Alves ◽  
Rosa Dantas ◽  

Thyroid cancer’s incidence has increased in the last decades, and its diagnosis can be a challenge. Further and complementary testing based in biochemical alterations may be important to correctly identify thyroid cancer and prevent unnecessary surgery. Fourier-transform infrared (FTIR) spectroscopy is a metabolomic technique that has already shown promising results in cancer metabolome analysis of neoplastic thyroid tissue, in the identification and classification of prostate tumor tissues and of breast carcinoma, among others. This work aims to gather and discuss published information on the ability of FTIR spectroscopy to be used in metabolomic studies of the thyroid, including discriminating between benign and malignant thyroid samples and grading and classifying different types of thyroid tumors.

Sign in / Sign up

Export Citation Format

Share Document