Virus Load Kinetics and Resistance Development During Oseltamivir Treatment in Infants and Children Infected With Influenza A(H1N1) 2009 and Influenza B Viruses

2012 ◽  
Vol 31 (9) ◽  
pp. 899-905 ◽  
Author(s):  
Barbara Rath ◽  
Max von Kleist ◽  
Franziska Tief ◽  
Katharina Karsch ◽  
Ewelina Tuerk ◽  
...  
1970 ◽  
Vol 8 (4) ◽  
pp. 84-90
Author(s):  
Musa Mohd. Nordin

During the 1918 Spanish Flu pandemic, often described as the most devastating epidemic in recorded history, 1 in 5 person was infected and an estimated 50 million lives were lost. The disease was so widespread and pervasive that even the children had a tune which they skipped rope to: I had a little bird, its name was Enza, I opened the window and In-Flu-Enza. DOI: 10.3329/bjms.v8i4.4705 Bangladesh Journal of Medical Sciences Vol.8(4); October 2009 pp84-90


JAMA ◽  
2010 ◽  
Vol 303 (1) ◽  
pp. 37 ◽  
Author(s):  
Terry Nolan ◽  
Jodie McVernon ◽  
Maryanne Skeljo ◽  
Peter Richmond ◽  
Ushma Wadia ◽  
...  

2021 ◽  
pp. 109352662110072
Author(s):  
Oana Neagu ◽  
Amparo Fernández Rodríguez ◽  
Domitille Callon ◽  
Laurent Andréoletti ◽  
Marta C Cohen

Background Acute myocarditis is an inflammatory disease of the heart mostly diagnosed in young people, which can present as sudden death. The etiology includes infectious agents (mostly viruses), systemic diseases and toxins. We aim to characterize infants and children with myocarditis at post-mortem presenting as sudden deaths. Methods Retrospective evaluation of 813 post-mortems in infants and children dying suddenly and unexpectedly between 2009–2019. Data retrieved included histological features, microbiology and clinical history. Results 23 of 813 post-mortems reviewed corresponded to acute myocarditis and 1 to dilated cardiomyopathy related to remote Parvovirus infection. PCR identified enterovirus (7), parvovirus (7 cases, 2 also with HHV6 and 1 case with EVB), Influenza A (1), Parainfluenza type 3 (1). Two cases corresponded to hypersensitivity myocarditis, 1 was Group A Streptococcus and 5 idiopathic myocarditis. Enterovirus was frequent in infants (7/10), and in newborns was associated with meningoencephalitis or congenital myocarditis. More than 50% were less than 2 years of age and all remained clinically unsuspected. Conclusion Myocarditis represents almost 3% of all sudden pediatric deaths. Enterovirus and parvovirus were the most common viruses. This retrospective analysis showed that patients experienced viral symptoms but remained unsuspected, highlighting the need for more clinical awareness of myocarditis.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-2
Author(s):  
Bishnu Prasad Upadhyay

Influenza virus type A and B are responsible for seasonal epidemics as well as pandemics in human. Influenza A viruses are further divided into two major groups namely, low pathogenic seasonal influenza (A/H1N1, A/H1N1 pdm09, A/H3N2) and highly pathogenic influenza virus (H5N1, H5N6, H7N9) on the basis of two surface antigens: hemagglutinin (HA) and neuraminidase (NA). Mutations, including substitutions, deletions, and insertions, are one of the most important mechanisms for producing new variant of influenza viruses. During the last 30 years; more than 50 viral threat has been evolved in South-East Asian countriesof them influenza is one of the major emerging and re-emerging infectious diseases of global concern. Similar to tropical and sub-tropical countries of Southeast Asia; circulation of A/H1N1 pdm09, A/H3N2 and influenza B has been circulating throughout the year with the peak during July-November in Nepal. However; the rate of infection transmission reach peak during the post-rain and winter season of Nepal.


2016 ◽  
Vol 21 (38) ◽  
Author(s):  
Richard Pebody ◽  
Fiona Warburton ◽  
Joanna Ellis ◽  
Nick Andrews ◽  
Alison Potts ◽  
...  

The United Kingdom (UK) is in the third season of introducing universal paediatric influenza vaccination with a quadrivalent live attenuated influenza vaccine (LAIV). The 2015/16 season in the UK was initially dominated by influenza A(H1N1)pdm09 and then influenza of B/Victoria lineage, not contained in that season’s adult trivalent inactivated influenza vaccine (IIV). Overall adjusted end-of-season vaccine effectiveness (VE) was 52.4% (95% confidence interval (CI): 41.0–61.6) against influenza-confirmed primary care consultation, 54.5% (95% CI: 41.6–64.5) against influenza A(H1N1)pdm09 and 54.2% (95% CI: 33.1–68.6) against influenza B. In 2–17 year-olds, adjusted VE for LAIV was 57.6% (95% CI: 25.1 to 76.0) against any influenza, 81.4% (95% CI: 39.6–94.3) against influenza B and 41.5% (95% CI: −8.5 to 68.5) against influenza A(H1N1)pdm09. These estimates demonstrate moderate to good levels of protection, particularly against influenza B in children, but relatively less against influenza A(H1N1)pdm09. Despite lineage mismatch in the trivalent IIV, adults younger than 65 years were still protected against influenza B. These results provide reassurance for the UK to continue its influenza immunisation programme planned for 2016/17.


2011 ◽  
Vol 16 (1) ◽  
Author(s):  
J Ellis ◽  
M Galiano ◽  
R Pebody ◽  
A Lackenby ◽  
CI Thompson ◽  
...  

The 2010/11 winter influenza season is underway in the United Kingdom, with co-circulation of influenza A(H1N1)2009 (antigenically similar to the current 2010/11 vaccine strain), influenza B (mainly B/Victoria/2/87 lineage, similar to the 2010/11 vaccine strain) and a few sporadic influenza A(H3N2) viruses. Clinical influenza activity has been increasing. Severe illness, resulting in hospitalisation and deaths, has occurred in children and young adults and has predominantly been associated with influenza A(H1N1)2009, but also influenza B viruses.


Author(s):  
Gee Yen Shin

The vaccines included in the current UK Immunisation Schedule offer protection against the following pathogens: A. Viruses ● Measles ● Mumps ● Rubella ● Polio ● Human Papilloma Virus (certain serotypes) ● Rotavirus ● Influenza virus (flu A and B) ● Varicella zoster virus (shingles) ● Hepatitis B virus B. Bacteria ● Corynebacterium diphtheriae (Diphtheria) ● Clostridium tetani (Tetanus) ● Bordetella pertussis (Pertussis) ● Haemophilus influenzae type B (Hib) ● Neisseria meningitidis (Meningococcal disease—certain serotypes) ● Streptococcus pneumoniae (Pneumococcal disease—certain serotypes) The UK Immunisation Schedule has evolved over several decades and reflects changes in vaccine development and commercial availability, national and sometimes international disease epidemiology, and the latest expert opinion. It is designed to offer optimal protection against infectious diseases of childhood to infants and children at the most appropriate age. The most up-to-date information about the UK Immunisation Schedule is available on the online version of the Department of Health publication commonly known as the ‘Green Book’: Immunisation Against Infectious Disease Handbook (see Further reading. Various chapters of the online version are updated at regular intervals; thus, it is very important to refer to the online version of the Green Book on the website for current guidance. Changes to the UK Immunisation Schedule are made on the recommendation of the independent Joint Committee on Vaccines and Immunisation (JCVI). Several of the UK Immunisation Schedule vaccines are combined vaccines: ● Measles, mumps, and rubella (MMR). ● Hexavalent diphtheria, tetanus, acellular pertussis, inactivated polio virus, Haemophilus influenza type b, hepatitis B (DTaP/IPV/Hib/HepB). ● Diphtheria, tetanus, acellular pertussis, inactivated polio, and Haemophilus influenzae (DTaP/IPV/Hib). ● Diphtheria, tetanus, acellular pertussis, inactivated polio (DTaP/IPV). ● Tetanus, diphtheria, and inactivated polio (Td/IPV). ● Inactivated influenza vaccine: influenza A H1N1, H3N2, influenza B. ● Live attenuated intranasal influenza vaccine: influenza A H1N1, H3N2, influenza B. In the UK, vaccines against single pathogens covered by the MMR vaccine are not recommended and not available in the National Health Service (NHS). There has been some limited demand for single-target vaccines, e.g. measles, due to misguided and unfounded concerns about the alleged risks of autism following MMR.


2017 ◽  
Vol 146 (1) ◽  
pp. 78-88 ◽  
Author(s):  
A. MÖHL ◽  
L. GRÄFE ◽  
C. HELMEKE ◽  
D. ZIEHM ◽  
M. MONAZAHIAN ◽  
...  

SUMMARYInfluenza vaccine effectiveness (VE) has to be estimated anew for every season to explore vaccines’ protective effect in the population. We report VE estimates against laboratory-confirmed influenza A(H1N1)pdm09, A(H3N2) and influenza B among children aged 2–17 years, using test-negative design. Pooled data from two German federal states’ surveillance systems for acute respiratory illness from week 40/2012 to 20/2016 was used, yielding a total of 10 627 specimens. Odds ratios and 95% confidence intervals (95% CIs) for the association between laboratory-confirmed influenza and vaccination status were calculated by multivariate logistic regression adjusting for age, sex, illness onset and federal state. VE was estimated as 1-Odds Ratio. Overall adjusted VE was 33% (95% CI: 24·3–40·7). A strong variation of VE between the seasons and subtypes was observed: highest season- and subtype-specific VE of 86·2% (95% CI: 41·3–96·7) was found against A(H1N1)pdm09 in 7–17-year-olds in 2015/16. Low estimates of VE were observed against A(H3N2) in any season, e.g. 1·5% (95% CI: −39·3–30·3) in 2014/15. Estimates showed a tendency to higher VE among 7–17-year-old children, but differences were not statistically significant. Although our findings are common in studies estimating influenza VE, we discussed several explanations for observed low VE.


2019 ◽  
Vol 220 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Tatiana Schäffer Gregianini ◽  
Ivana R Santos Varella ◽  
Patricia Fisch ◽  
Letícia Garay Martins ◽  
Ana B G Veiga

Abstract Influenza surveillance is important for disease control and should consider possible coinfection with different viruses, which can be associated with disease severity. This study analyzed 34 459 patients with respiratory infection from 2009 to 2018, of whom 8011 were positive for influenza A virus (IAV) or influenza B virus (IBV). We found 18 cases of dual influenza virus infection, including coinfection with 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) and influenza A(H3N2) virus (1 case), A(H1N1)pdm09 and IBV (6 cases), A(H3N2) and IBV (8 cases), and nonsubtyped IAV and IBV (3 cases); and 1 case of triple infection with A(H3N2), A(H1N1)pdm09, and IBV. Compared with 76 monoinfected patients, coinfection was significantly associated with cardiopathy and death. Besides demographic characteristics and clinical symptoms, we assessed vaccination status, antiviral treatment, timeliness of antiviral use, hospitalization, and intensive care unit admission, but no significant differences were found between coinfected and monoinfected cases. Our findings indicate that influenza virus coinfection occurs more often than previously reported and that it can lead to a worse disease outcome.


Sign in / Sign up

Export Citation Format

Share Document