scholarly journals Estimating vaccine effectiveness against laboratory-confirmed influenza among children and adolescents in Lower Saxony and Saxony-Anhalt, 2012–2016

2017 ◽  
Vol 146 (1) ◽  
pp. 78-88 ◽  
Author(s):  
A. MÖHL ◽  
L. GRÄFE ◽  
C. HELMEKE ◽  
D. ZIEHM ◽  
M. MONAZAHIAN ◽  
...  

SUMMARYInfluenza vaccine effectiveness (VE) has to be estimated anew for every season to explore vaccines’ protective effect in the population. We report VE estimates against laboratory-confirmed influenza A(H1N1)pdm09, A(H3N2) and influenza B among children aged 2–17 years, using test-negative design. Pooled data from two German federal states’ surveillance systems for acute respiratory illness from week 40/2012 to 20/2016 was used, yielding a total of 10 627 specimens. Odds ratios and 95% confidence intervals (95% CIs) for the association between laboratory-confirmed influenza and vaccination status were calculated by multivariate logistic regression adjusting for age, sex, illness onset and federal state. VE was estimated as 1-Odds Ratio. Overall adjusted VE was 33% (95% CI: 24·3–40·7). A strong variation of VE between the seasons and subtypes was observed: highest season- and subtype-specific VE of 86·2% (95% CI: 41·3–96·7) was found against A(H1N1)pdm09 in 7–17-year-olds in 2015/16. Low estimates of VE were observed against A(H3N2) in any season, e.g. 1·5% (95% CI: −39·3–30·3) in 2014/15. Estimates showed a tendency to higher VE among 7–17-year-old children, but differences were not statistically significant. Although our findings are common in studies estimating influenza VE, we discussed several explanations for observed low VE.

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1094
Author(s):  
Hyder Mir ◽  
Inaamul Haq ◽  
Parvaiz A. Koul

Influenza vaccine uptake in India is poor, and scant data exist regarding the effectiveness of influenza vaccine against hospitalization. Methods: From October 2019 to March 2020, vaccination status of 1219 patients (males n = 571, aged 5–107 years; median, 50 years) hospitalized with severe acute respiratory illness (SARI) was assessed. The patients were tested for influenza viruses and their subtypes by RT PCR. Sequencing of the HA gene was performed. Vaccine effectiveness (VE) against influenza subtypes was estimated by the test negative design. Results: A total of 336 (27.5%) patients were influenza-positive, with influenza B/Victoria accounting for 49.7% (n = 167), followed by influenza A/H1N1 (47.6%; n = 155) and influenza A/H3N2 (4.4%; n = 15). About 6.8% and 8.6% of the influenza-positive and influenza-negative patients, respectively, had been vaccinated. Adjusted VE for any influenza strain was 13% (95% CI −42 to 47), which for influenza B was 0%. HA sequencing revealed that influenza B samples mainly belonged to subclade V1A.3/133R with deletion of residues 163–165, as against the 2-aa deletion in influenza B/Colorado/06/2017 strain, contained in the vaccine. VE for influenza A/H1N1 was 55%. Conclusions: Poor VE due to a genetic mismatch between the circulating strain and the vaccine strain calls for efforts to reduce the mismatch.


Author(s):  
Terezinha Maria de Paiva ◽  
Maria Akiko Ishida ◽  
Maria Gisele Gonçalves ◽  
Margareth Aparecida Benega ◽  
Maria Candida Oliveira de Souza ◽  
...  

Through the influenza virus surveillance from January to October 2002, influenza B/Hong Kong-like strains circulating in the Southeast and Centre East regions of Brazil have been demonstrated. This strain is a variant from B/Victoria/02/88 whose since 1991 and until recently have been isolated relatively infrequently and have been limited to South-Eastern Asia. A total of 510 respiratory secretions were collected from patients 0 to 60 years of age, with acute respiratory illness, living in the Southeast and Centre East regions of Brazil, of which 86 (17.13%) were positive for influenza virus. Among them 12 (13.95%) were characterized as B/Hong Kong/330/2001; 3 (3.49%) as B/Hong Kong/1351/2002 a variant from B/Hong Kong/330/2001; 1 (1.16%) as B/Sichuan/379/99; 1 (1.16%) as B/Shizuoka/5/2001, until now. The percentages of cases notified during the surveillance period were 34.88%, 15.12%, 15.12%, 4.65%, 15.12%, 13.95%, in the age groups of 0-4, 5-10, 11-15, 16-20, 21-30, 31-50, respectively. The highest proportion of isolates was observed among children younger than 4 years but serious morbidity and mortality has not been observed among people older than 65 years, although B influenza virus component for vaccination campaign 2002 was B/Sichuan/379/99 strain. This was probably due to the elderly protection acquired against B/Victoria/02/88. In addition, in influenza A/Panama/2007/99-like (H3N2) strains 22 (25.58%) were also detected, but influenza A(H1N1) has not been detected yet.


2019 ◽  
Vol 24 (31) ◽  
Author(s):  
Ainara Mira-Iglesias ◽  
F Xavier López-Labrador ◽  
Víctor Baselga-Moreno ◽  
Miguel Tortajada-Girbés ◽  
Juan Mollar-Maseres ◽  
...  

Introduction Influenza immunisation is recommended for elderly people each season. The influenza vaccine effectiveness (IVE) varies annually due to influenza viruses evolving and the vaccine composition. Aim To estimate, in inpatients ≥ 60 years old, the 2017/18 trivalent IVE, overall, by vaccine type and by strain. The impact of vaccination in any of the two previous seasons (2016/17 and 2015/16) on current (2017/18) IVE was also explored. Methods This was a multicentre prospective observational study within the Valencia Hospital Surveillance Network for the Study of Influenza and Respiratory Viruses Disease (VAHNSI, Spain). The test-negative design was applied taking laboratory-confirmed influenza as outcome and vaccination status as main exposure. Information about potential confounders was obtained from clinical registries and/or by interviewing patients; vaccine information was only ascertained by registries. Results Overall, 2017/18 IVE was 9.9% (95% CI: −15.5 to 29.6%), and specifically, 48.3% (95% CI: 13.5% to 69.1%), −29.9% (95% CI: −79.1% to 5.8%) and 25.7% (95% CI: −8.8% to 49.3%) against A(H1N1)pdm09, A(H3N2) and B/Yamagata lineage, respectively. For the adjuvanted and non-adjuvanted vaccines, overall IVE was 10.0% (95% CI: −24.4% to 34.9%) and 7.8% (95% CI: −23.1% to 31.0%) respectively. Prior vaccination significantly protected against influenza B/Yamagata lineage (IVE: 50.2%; 95% CI: 2.3% to 74.6%) in patients not vaccinated in the current season. For those repeatedly vaccinated against influenza A(H1N1)pdm09, IVE was 46.4% (95% CI: 6.8% to 69.2%). Conclusion Our data revealed low vaccine effectiveness against influenza in hospitalised patients ≥60 years old in 2017/18. Prior vaccination protected against influenza A(H1N1)pdm09 and B/Yamagata-lineage.


2012 ◽  
Vol 141 (3) ◽  
pp. 620-630 ◽  
Author(s):  
R. G. PEBODY ◽  
N. ANDREWS ◽  
D. M. FLEMING ◽  
J. McMENAMIN ◽  
S. COTTRELL ◽  
...  

SUMMARYAn analysis was undertaken to measure age-specific vaccine effectiveness (VE) of 2010/11 trivalent seasonal influenza vaccine (TIV) and monovalent 2009 pandemic influenza vaccine (PIV) administered in 2009/2010. The test-negative case-control study design was employed based on patients consulting primary care. Overall TIV effectiveness, adjusted for age and month, against confirmed influenza A(H1N1)pdm 2009 infection was 56% (95% CI 42–66); age-specific adjusted VE was 87% (95% CI 45–97) in <5-year-olds and 84% (95% CI 27–97) in 5- to 14-year-olds. Adjusted VE for PIV was only 28% (95% CI −6 to 51) overall and 72% (95% CI 15–91) in <5-year-olds. For confirmed influenza B infection, TIV effectiveness was 57% (95% CI 42–68) and in 5- to 14-year-olds 75% (95% CI 32–91). TIV provided moderate protection against the main circulating strains in 2010/2011, with higher protection in children. PIV administered during the previous season provided residual protection after 1 year, particularly in the <5 years age group.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S60-S60
Author(s):  
Ashley Fowlkes ◽  
Hannah Friedlander ◽  
Andrea Steffens ◽  
Kathryn Como-Sabetti ◽  
Dave Boxrud ◽  
...  

Abstract Background Due to marked variability in circulating influenza viruses each year, annual evaluation of the vaccine’s effectiveness against severe outcomes is essential. We used the Minnesota Department of Health’s (MDH) Severe Acute Respiratory Illness (SARI) surveillance to evaluate vaccine effectiveness (VE) against influenza-associated hospitalization over three influenza seasons. Methods Residual respiratory specimens from patients admitted with SARI were sent to the MDH laboratory for influenza RT-PCR testing. Medical records were reviewed to collect patient data. Vaccination history was verified using the state immunization registry. We included patients aged ≥6 months to &lt; 13 years, after which immunization reporting is not required, hospitalized from the earliest influenza detection after July through April each year. We defined vaccinated patients as those ≥1 dose of influenza vaccine in the current season. Children aged &lt; 9 years with no history of vaccination were considered vaccinated if 2 were doses given a month apart. Partially vaccinated children were excluded. We estimated VE as 1 minus the adjusted odds ratio (x100%) of influenza vaccination among influenza cases vs. negative controls, controlling for age, race, days from onset to admission, comorbidities, and admission month. Results Among 2198 SARI patients, 763 (35%) were vaccinated for influenza, 180 (8.2%) were partially vaccinated, and 1255 (57%) were unvaccinated. Influenza was detected among 202 (9.2%) children, and significantly more frequently among children aged ≥5 years (17%) compared with younger children (7.4%). The adjusted VE in 2013–14 was 68% (95% Confidence Interval: 34, 85), but was non-significant during the 2014–15 and 2015–16 seasons (Figure). Estimates of VE by influenza A subtypes varied substantially by year; VE against influenza B viruses was significant, but could not be stratified by year. VE was impacted when live attenuated influenza vaccine recipients were excluded. Conclusion We report moderately high influenza VE in 2013–14 and a point estimate higher than other published estimates from outpatient data in 2014–15. These results, underscore the importance of influenza vaccination to prevent severe outcomes such as hospitalization. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 147 ◽  
Author(s):  
L. Fernandes-Matano ◽  
I. E. Monroy-Muñoz ◽  
M. Bermúdez de León ◽  
Y. A. Leal-Herrera ◽  
I. D. Palomec-Nava ◽  
...  

AbstractThe disease caused by the influenza virus is a global public health problem due to its high rates of morbidity and mortality. Thus, analysis of the information generated by epidemiological surveillance systems has vital importance for health decision making. A retrospective analysis was performed using data generated by the four molecular diagnostic laboratories of the Mexican Social Security Institute between 2010 and 2016. Demographics, influenza positivity, seasonality, treatment choices and vaccination status analyses were performed for the vaccine according to its composition for each season. In all cases, both the different influenza subtypes and different age groups were considered separately. The circulation of A/H1N1pdm09 (48.7%), influenza A/H3N2 (21.1%), influenza B (12.6%), influenza A not subtyped (11%) and influenza A/H1N1 (6.6%) exhibited well-defined annual seasonality between November and March, and there were significant increases in the number of cases every 2 years. An inadequate use of oseltamivir was determined in 38% of cases, and the vaccination status in general varied between 12.1 and 18.5% depending on the season. Our results provide current information about influenza in Mexico and demonstrate the need to update both operational case definitions and medical practice guidelines to reduce the inappropriate use of antibiotics and antivirals.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S68-S68
Author(s):  
Jessie Chung ◽  
Brendan Flannery ◽  
Rodolfo Begue ◽  
Herve Caspard ◽  
Laurie Demarcus ◽  
...  

Abstract Background Quadrivalent live attenuated influenza vaccine (LAIV4) was not recommended for use in the United States for the 2016–2017 and 2017–2018 influenza seasons based on US observational studies of vaccine effectiveness (VE) from 2013–2014 to 2015–2016. We pooled individual patient data on children aged 2–17 years enrolled in 5 US studies during these 3 influenza seasons to further investigate VE by vaccine type. Methods Analyses included 17,173 children enrolled in the US Department of Defense Global Laboratory-based Influenza Surveillance Program, US Influenza Vaccine Effectiveness Network, Influenza Incidence Surveillance Project, Influenza Clinical Investigation for Children, and a Louisiana State University study. Participants’ specimens were tested for influenza by reverse transcription-polymerase chain reaction (RT-PCR), culture, or a combination of rapid antigen testing and RT-PCR. VE was calculated by comparing odds of vaccination with either inactivated influenza vaccine (IIV) or LAIV4 among influenza-positive cases to test-negative controls and calculated as 100 × (1 − odds ratio) in logistic regression models with age, calendar time, influenza season, and study site (random effect). Patients were stratified by prior season vaccination status in a subanalysis. Results Overall, 38% of patients (N = 6,558) were vaccinated in the current season, of whom 30% (N = 1,979) received LAIV4. Pooled VE of IIV against any influenza virus was 51% (95% CI: 47, 54) versus 26% (95% CI: 15, 36) for LAIV4. Point estimates for pooled VE against any influenza by age group ranged from 45% to 58% for IIV and 19% to 34% for LAIV4 during the 3 seasons (Figures 1 and 2). Pooled VE against influenza A(H1N1)pdm09 was 67% (95% CI: 62, 72) for IIV versus 20% (95% CI: −6, 39) for LAIV4. Pooled VE against influenza A(H3N2) was 29% (95% CI: 14, 42) for IIV versus 7% (95% CI: −11, 23) for LAIV4, and VE against influenza B was 52% (95% CI: 42, 60) for IIV and 66% (95% CI: 47, 77) for LAIV4. VE against influenza A(H1N1)pdm09 was lower for LAIV4 versus IIV across all strata of prior season vaccination (Figure 3). Conclusion Consistent with individual studies, our pooled analyses found that LAIV4 effectiveness was reduced for all age groups against influenza A(H1N1)pdm09 compared with IIV. This result did not vary based on prior vaccination status. Disclosures H. Caspard, AstraZeneca: Employee, Salary.


Author(s):  
J M Ferdinands ◽  
M Gaglani ◽  
S Ghamande ◽  
E T Martin ◽  
D Middleton ◽  
...  

Abstract We estimated vaccine effectiveness for prevention of influenza-associated hospitalizations among adults during the 2018-2019 influenza season. Adults admitted with acute respiratory illness to 14 hospitals of the US Hospitalized Adult Influenza Vaccine Effectiveness Network and testing positive for influenza were cases; patients testing negative were controls. Vaccine effectiveness was estimated using logistic regression and inverse probability of treatment weighting. We analyzed data from 2863 patients with mean age of 63 years. Adjusted VE against influenza A(H1N1)pdm09-associated hospitalization was 51% (95%CI 25, 68). Adjusted VE against influenza A(H3N2) virus-associated hospitalization was −2% (95%CI −65, 37) and differed significantly by age, with VE of −130% (95% CI −374, −27) among adults 18 to ≤56 years of age. Although vaccination halved the risk of influenza-A(H1N1)pdm09-associated hospitalizations, it conferred no protection against influenza A(H3N2)-associated hospitalizations. We observed negative VE for young-and middle-aged adults but cannot exclude residual confounding as a potential explanation.


2020 ◽  
Vol 43 (3) ◽  
pp. 1-7
Author(s):  
Nattapol Narong ◽  
Siriwat Manajit ◽  
Sirikarn Athipanyasil ◽  
Niracha Athipanyasilp ◽  
Ruengpung Sutthent ◽  
...  

Background: Influenza A (pandemic and seasonal H1/H3) and influenza B viruses were the predominant circulating seasonal influenza strains. Following its massive outbreak in 2009 globally, including Thailand, influenza A (H1N1) pdm09 viruses have replaced the previous seasonal H1 strain and become one of the circulating strains ever since. Both influenza A and B viruses are highly contagious and potentially cause respiratory illness ranging from mild to severe. Objective: To determine the prevalence of types and subtypes of circulating influenza virus strains in Bangkok, Thailand during 2013 - 2017. Methods: The 4385 nasopharyngeal wash specimens were collected from patients presented with influenza-like illness from January 2013 to December 2017 at Siriraj Hospital, Bangkok, Thailand. Influenza virus types and subtypes were determined using real-time RT-PCR technique. Clinical characteristics of patients infected with influenza A viruses and influenza B virus were compared and analyzed. Results: Of 4385 nasopharyngeal wash specimens, the prevalence of influenza virus infection during 2013 - 2017 was 18.22% (n = 799). Of 799 influenza-positive samples, 608 (76.09%) and 191 (23.90%) samples were positive for influenza A and influenza B viruses, respectively. Most patients were presented with fever, cough, and runny nose; however, patients infected with influenza A virus generally had higher severity than those with influenza B virus infection (P < .05). Conclusions: The findings provided the characteristics of influenza virus types and subtypes at Siriraj Hospital, Bangkok, Thailand during 2013 - 2017. Sporadic cases of influenza occurred all year round, but the incidence peaked in March 2014 and August 2017. The outcomes of this study are potentially useful for prevention, treatment, and disease monitoring.  


2017 ◽  
Vol 22 (30) ◽  
Author(s):  
Marc Rondy ◽  
Amparo Larrauri ◽  
Itziar Casado ◽  
Valeria Alfonsi ◽  
Daniela Pitigoi ◽  
...  

We conducted a multicentre test-negative case–control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged ≥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases.


Sign in / Sign up

Export Citation Format

Share Document