Mycobacterium tuberculosis Diversity by Exact Tandem Repeats-Variable Number Tandem Repeat Method in Azerbaijan, Iran

2018 ◽  
Vol 26 (2) ◽  
pp. 80-83
Author(s):  
Mostafa Danandeh ◽  
Seyed Reza Moadab ◽  
Mohammad Asgharzadeh ◽  
Naser Alizadeh ◽  
Reza Ghotaslou
2017 ◽  
Vol 139 ◽  
pp. 12-14 ◽  
Author(s):  
Junji Seto ◽  
Takayuki Wada ◽  
Yu Suzuki ◽  
Tatsuya Ikeda ◽  
Katsumi Mizuta ◽  
...  

2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Yoshiro Murase ◽  
Kiyohiko Izumi ◽  
Akihiro Ohkado ◽  
Akio Aono ◽  
Kinuyo Chikamatsu ◽  
...  

ABSTRACT Strain genotyping based on the variable-number tandem repeat (VNTR) is widely applied for identifying the transmission of Mycobacterium tuberculosis. A consensus set of four hypervariable loci (1982, 3232, 3820, and 4120) has been proposed to improve the discrimination of Beijing lineage strains. Herein, we evaluated the utility of these four hypervariable loci for tracing local tuberculosis transmission in 981 cases over a 14-month period in Japan (2010 to 2011). We used six different VNTR systems, with or without the four hypervariable loci. Patient ages and weighted standard distances (a measure of the dispersion of genotype-clustered cases) were used as proxies for estimating local tuberculosis transmission. The highest levels of isolate discrimination were achieved with VNTR systems that incorporated the four hypervariable loci (i.e., the Japan Anti-Tuberculosis Association [JATA]18-VNTR, mycobacterial interspersed repetitive unit [MIRU]28-VNTR, and 24Beijing-VNTR). The clustering rates by JATA12-VNTR, MIRU15-VNTR, JATA15-VNTR, JATA18-VNTR, MIRU28-VNTR, and 24Beijing-VNTR systems were 52.2%, 51.0%, 39.0%, 24.1%, 23.1%, and 22.0%, respectively. As the discriminative power increased, the median weighted standard distances of the clusters tended to decrease (from 311 to 80 km, P < 0.001, Jonckheere-Terpstra trend test). Concurrently, the median ages of patients in the clusters tended to decrease (from 68 to 60 years, P < 0.001, Jonckheere-Terpstra trend test). These findings suggest that strain typing using the four hypervariable loci improves the prediction of active local tuberculosis transmission. The four-locus set can therefore contribute to the targeted control of tuberculosis in settings with high prevalence of Beijing lineage strains.


2005 ◽  
Vol 71 (12) ◽  
pp. 8207-8213 ◽  
Author(s):  
Andrea Gibson ◽  
Timothy Brown ◽  
Lucy Baker ◽  
Francis Drobniewski

ABSTRACT The phylogeny and evolution of the bacterium Mycobacterium tuberculosis is still poorly understood despite the application of a variety of molecular techniques. We analyzed 469 M. tuberculosis and 49 Mycobacterium bovis isolates to evaluate if the mycobacterial interspersed repetitive units-variable-number tandem repeats (MIRU-VNTR) commonly used for epidemiological studies can define the phylogeny of the M. tuberculosis complex. This population was characterized by previously identified silent single-nucleotide polymorphisms (sSNPs) or by a macroarray based on these sSNPs that was developed in this study. MIRU-VNTR phylogenetic codes capable of differentiating between phylogenetic lineages were identified. Overall, there was 90.9% concordance between the lineages of isolates as defined by the MIRU-VNTR and sSNP analyses. The MIRU-VNTR phylogenetic code was unique to M. bovis and was not observed in any M. tuberculosis isolates. The codes were able to differentiate between different M. tuberculosis strain families such as Beijing, Delhi, and East African-Indian. Discrepant isolates with similar but not identical MIRU-VNTR codes often displayed a stepwise trend suggestive of bidirectional evolution. A lineage-specific panel of MIRU-VNTR can be used to subdivide each lineage for epidemiological purposes. MIRU-VNTR is a valuable tool for phylogenetic studies and could define an evolutionarily uncharacterized population of M. tuberculosis complex organisms.


Sign in / Sign up

Export Citation Format

Share Document