Inhibitory interneurons with differential plasticities at their connections tune excitatory/inhibitory balance in the spinal nociceptive system

Pain ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Lou Cathenaut ◽  
Benjamin Leonardon ◽  
Robin Kuster ◽  
Perrine Inquimbert ◽  
Rémy Schlichter ◽  
...  
2020 ◽  
Author(s):  
Xingzhi He ◽  
Jiarui Li ◽  
Guangjun Zhou ◽  
Jing Yang ◽  
Sam McKenzie ◽  
...  

2009 ◽  
Vol 277 (1684) ◽  
pp. 1011-1020 ◽  
Author(s):  
Chet C. Sherwood ◽  
Mary Ann Raghanti ◽  
Cheryl D. Stimpson ◽  
Muhammad A. Spocter ◽  
Monica Uddin ◽  
...  

Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.


2021 ◽  
Vol 34 (2) ◽  
pp. 139-153
Author(s):  
Boudewijn van den Berg ◽  
Jan R. Buitenweg

AbstractMonitoring nociceptive processing is a current challenge due to a lack of objective measures. Recently, we developed a method for simultaneous tracking of psychophysical detection probability and brain evoked potentials in response to intra-epidermal stimulation. An exploratory investigation showed that we could quantify nociceptive system behavior by estimating the effect of stimulus properties on the evoked potential (EP). The goal in this work was to accurately measure nociceptive system behavior using this method in a large group of healthy subjects to identify the locations and latencies of EP components and the effect of single- and double-pulse stimuli with an inter-pulse interval of 10 or 40 ms on these EP components and detection probability. First, we observed the effect of filter settings and channel selection on the EP. Subsequently, we compared statistical models to assess correlation of EP and detection probability with stimulus properties, and quantified the effect of stimulus properties on both outcome measures through linear mixed regression. We observed lateral and central EP components in response to intra-epidermal stimulation. Detection probability and central EP components were positively correlated to the amplitude of each pulse, regardless of the inter-pulse interval, and negatively correlated to the trial number. Both central and lateral EP components also showed strong correlation with detection. These results show that both the observed EP and the detection probability reflect the various steps of processing of a nociceptive stimulus, including peripheral nerve fiber recruitment, central synaptic summation, and habituation to a repeated stimulus.


2013 ◽  
Vol 33 (28) ◽  
pp. 11372-11389 ◽  
Author(s):  
J. Zhuang ◽  
C. R. Stoelzel ◽  
Y. Bereshpolova ◽  
J. M. Huff ◽  
X. Hei ◽  
...  

2021 ◽  
Author(s):  
Mohamad Motaharinia ◽  
Kimberly Gerrow ◽  
Roobina Boghozian ◽  
Emily White ◽  
Sun-Eui Choi ◽  
...  

Abstract Stroke profoundly disrupts cortical excitability which impedes recovery, but how it affects the function of specific inhibitory interneurons, or subpopulations therein, is poorly understood. Interneurons expressing vasoactive intestinal peptide (VIP) represent an intriguing stroke target because they can regulate cortical excitability through disinhibition. Here we chemogenetically augmented VIP interneuron excitability after stroke to show that it enhances somatosensory responses and improves recovery of paw function. Using longitudinal calcium imaging, we discovered that stroke primarily disrupts the fidelity (fraction of responsive trials) and predictability of sensory responses within a subset of highly active VIP neurons. Partial recovery of responses occurred largely within these active neurons and was not accompanied by the recruitment of minimally active neurons. Importantly, chemogenetic stimulation preserved sensory response fidelity and predictability in highly active neurons. These findings provide a new depth of understanding into how stroke and prospective therapies (chemogenetics), can influence subpopulations of inhibitory interneurons.


1982 ◽  
Vol 48 (6) ◽  
pp. 1279-1288 ◽  
Author(s):  
S. R. Soffe ◽  
A. Roberts

1. In curarized, late developmental stage Xenopus embryos, episodes of rhythmic motor root discharge, termed fictive swimming (17), may be evoked by touch or by dimming the lights, as in unparalyzed animals. Motoneurons are tonically depolarized throughout each episode, are phasically excited to fire 1 spike per cycle, and receive a midcycle inhibitory postsynaptic potential (IPSP) in phase with motor root activity on the opposite side. 2. Rostral hemisection of the spinal cord abolishes motor root discharge on the operated side caudal to the cut but leaves activity on the intact side unaffected. In motoneurons, the tonic depolarization is abolished on the hemisected side but is still present on the intact side. This is evidence that the tonic depolarization is a descending drive. 3. Midcycle IPSPs normally seen in motoneurons during fictive swimming are abolished by rostral hemisection of the opposite side of the cord but are still recorded on the cut side. The simplest conclusion is that the inhibitory interneurons responsible lie on the opposite side of the spinal cord to the motoneurons they inhibit, and so represent a reciprocal inhibitory pathway. 4. The phasic excitatory postsynaptic potentials (EPSPs), which drive motoneuron spikes during swimming, are still present on the intact side of a rostrally hemisected cord but are abolished on the operated side. We conclude that the excitatory interneurons responsible lie on the same side of the cord as the motoneurons they excite.


Sign in / Sign up

Export Citation Format

Share Document