scholarly journals Observation of Nociceptive Processing: Effect of Intra-Epidermal Electric Stimulus Properties on Detection Probability and Evoked Potentials

2021 ◽  
Vol 34 (2) ◽  
pp. 139-153
Author(s):  
Boudewijn van den Berg ◽  
Jan R. Buitenweg

AbstractMonitoring nociceptive processing is a current challenge due to a lack of objective measures. Recently, we developed a method for simultaneous tracking of psychophysical detection probability and brain evoked potentials in response to intra-epidermal stimulation. An exploratory investigation showed that we could quantify nociceptive system behavior by estimating the effect of stimulus properties on the evoked potential (EP). The goal in this work was to accurately measure nociceptive system behavior using this method in a large group of healthy subjects to identify the locations and latencies of EP components and the effect of single- and double-pulse stimuli with an inter-pulse interval of 10 or 40 ms on these EP components and detection probability. First, we observed the effect of filter settings and channel selection on the EP. Subsequently, we compared statistical models to assess correlation of EP and detection probability with stimulus properties, and quantified the effect of stimulus properties on both outcome measures through linear mixed regression. We observed lateral and central EP components in response to intra-epidermal stimulation. Detection probability and central EP components were positively correlated to the amplitude of each pulse, regardless of the inter-pulse interval, and negatively correlated to the trial number. Both central and lateral EP components also showed strong correlation with detection. These results show that both the observed EP and the detection probability reflect the various steps of processing of a nociceptive stimulus, including peripheral nerve fiber recruitment, central synaptic summation, and habituation to a repeated stimulus.

2017 ◽  
Vol 34 ◽  
pp. 43-48 ◽  
Author(s):  
Sandro Zambito-Marsala ◽  
Roberto Erro ◽  
Ruggero Bacchin ◽  
Annalisa Fornasier ◽  
Federico Fabris ◽  
...  

2010 ◽  
Vol 25 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Michele Tinazzi ◽  
Serena Recchia ◽  
Sara Simonetto ◽  
Stefano Tamburin ◽  
Giovanni Defazio ◽  
...  

Brain Injury ◽  
2015 ◽  
Vol 29 (12) ◽  
pp. 1467-1474 ◽  
Author(s):  
S. De Salvo ◽  
A. Naro ◽  
L. Bonanno ◽  
M. Russo ◽  
N. Muscarà ◽  
...  

Author(s):  
Boudewijn van den Berg ◽  
Hemme J. Hijma ◽  
Ingrid Koopmans ◽  
Robert J. Doll ◽  
Rob G. J. A. Zuiker ◽  
...  

AbstractSleep deprivation has been shown to increase pain intensity and decrease pain thresholds in healthy subjects. In chronic pain patients, sleep impairment often worsens the perceived pain intensity. This increased pain perception is the result of altered nociceptive processing. We recently developed a method to quantify and monitor altered nociceptive processing by simultaneous tracking of psychophysical detection thresholds and recording of evoked cortical potentials during intra-epidermal electric stimulation. In this study, we assessed the sensitivity of nociceptive detection thresholds and evoked potentials to altered nociceptive processing after sleep deprivation in an exploratory study with 24 healthy male and 24 healthy female subjects. In each subject, we tracked nociceptive detection thresholds and recorded central evoked potentials in response to 180 single- and 180 double-pulse intra-epidermal electric stimuli. Results showed that the detection thresholds for single- and double-pulse stimuli and the average central evoked potential for single-pulse stimuli were significantly decreased after sleep deprivation. When analyzed separated by sex, these effects were only significant in the male population. Multivariate analysis showed that the decrease of central evoked potential was associated with a decrease of task-related evoked activity. Measurement repetition led to a decrease of the detection threshold to double-pulse stimuli in the mixed and the female population, but did not significantly affect any other outcome measures. These results suggest that simultaneous tracking of psychophysical detection thresholds and evoked potentials is a useful method to observe altered nociceptive processing after sleep deprivation, but is also sensitive to sex differences and measurement repetition.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12250
Author(s):  
Yui Shiroshita ◽  
Hikari Kirimoto ◽  
Tatsunori Watanabe ◽  
Keisuke Yunoki ◽  
Ikuko Sobue

Background Recently, event-related potentials (ERPs) evoked by skin puncture, commonly used for blood sampling, have received attention as a pain assessment tool in neonates. However, their latency appears to be far shorter than the latency of ERPs evoked by intraepidermal electrical stimulation (IES), which selectively activates nociceptive Aδ and C fibers. To clarify this important issue, we examined whether ERPs evoked by skin puncture appropriately reflect central nociceptive processing, as is the case with IES. Methods In Experiment 1, we recorded evoked potentials to the click sound produced by a lance device (click-only), lance stimulation with the click sound (click+lance), or lance stimulation with white noise (WN+lance) in eight healthy adults to investigate the effect of the click sound on the ERP evoked by skin puncture. In Experiment 2, we tested 18 heathy adults and recorded evoked potentials to shallow lance stimulation (SL) with a blade that did not reach the dermis (0.1 mm insertion depth); normal lance stimulation (CL) (1 mm depth); transcutaneous electrical stimulation (ES), which mainly activates Aβ fibers; and IES, which selectively activates Aδ fibers when low stimulation current intensities are applied. White noise was continuously presented during the experiments. The stimulations were applied to the hand dorsum. In the SL, the lance device did not touch the skin and the blade was inserted to a depth of 0.1 mm into the epidermis, where the free nerve endings of Aδ fibers are located, which minimized the tactile sensation caused by the device touching the skin and the activation of Aβ fibers by the blade reaching the dermis. In the CL, as in clinical use, the lance device touched the skin and the blade reached a depth of 1 mm from the skin surface, i.e., the depth of the dermis at which the Aβ fibers are located. Results The ERP N2 latencies for click-only (122 ± 2.9 ms) and click+lance (121 ± 6.5 ms) were significantly shorter than that for WN+lance (154 ± 7.1 ms). The ERP P2 latency for click-only (191 ± 11.3 ms) was significantly shorter than those for click+lance (249 ± 18.6 ms) and WN+lance (253 ± 11.2 ms). This suggests that the click sound shortens the N2 latency of the ERP evoked by skin puncture. The ERP N2 latencies for SL, CL, ES, and IES were 146 ± 8.3, 149 ± 9.9, 148 ± 13.1, and 197 ± 21.2 ms, respectively. The ERP P2 latencies were 250 ± 18.2, 251 ± 14.1, 237 ± 26.3, and 294 ± 30.0 ms, respectively. The ERP latency for SL was significantly shorter than that for IES and was similar to that for ES. This suggests that the penetration force generated by the blade of the lance device activates the Aβ fibers, consequently shortening the ERP latency. Conclusions Lance ERP may reflect the activation of Aβ fibers rather than Aδ fibers. A pain index that correctly and reliably reflects nociceptive processing must be developed to improve pain assessment and management in neonates.


2015 ◽  
Vol 234 (1) ◽  
pp. 219-227 ◽  
Author(s):  
Robert J. Doll ◽  
Annefloor C. A. Maten ◽  
Sjoerd P. G. Spaan ◽  
Peter H. Veltink ◽  
Jan R. Buitenweg

Sign in / Sign up

Export Citation Format

Share Document