scholarly journals Inhibition of Radiation-Induced DNA Repair and Prosurvival Pathways Contributes to Vorinostat-Mediated Radiosensitization of Pancreatic Cancer Cells

Pancreas ◽  
2010 ◽  
Vol 39 (8) ◽  
pp. 1277-1283 ◽  
Author(s):  
Amit Deorukhkar ◽  
Shujun Shentu ◽  
Hee Chul Park ◽  
Parmeswaran Diagaradjane ◽  
Vinay Puduvalli ◽  
...  
2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 203-203
Author(s):  
R. Tuli ◽  
A. Surmak ◽  
A. Blackford ◽  
A. Leubner ◽  
E. M. Jaffee ◽  
...  

203 Background: Poly-(ADP ribose) polymerases (PARPs) are DNA-binding proteins involved in DNA repair. PARP inhibition has resulted in excellent antitumor activity when used with other cytotoxic therapies. ABT-888 is a promising PARP inhibitor with excellent potency against the PARP-1/2 enzymes and good oral bioavailability. We attempt to determine whether PARP-1/2 inhibition alone, or in combination with gemcitabine, will enhance the effects of irradiation (RT) of pancreatic cancer cells. Methods: The pancreatic carcinoma cell lines, MiaPaCa-2 and Panc02, were treated with ABT-888, gemcitabine, RT, or combinations thereof. RT was delivered with a 137-Cs Gammacell in a single fraction. Cells were pre-treated once with ABT-888 and/or gemcitabine 30 minutes prior to RT. Viability was assessed through reduction of resazurin into fluorescent resorufin. Levels of apoptosis were determined by measuring caspase-3/7 activity using a luminescent assay. PARP activity was determined using a chemiluminescent PAR elisa. Results: The half maximal inhibitory concentration (IC50) of RT was 5 Gy; IC10 for ABT-888 and gemcitabine were 10 uM and 5 nM, respectively. Treatment with ABT-888 (10 uM), gemcitabine (5 nM), or combinations of the two with RT led to increasingly higher rates of cell death 8 days after treatment (p<0.001). RT dose enhancement factors were 1.5, 1.82 and 2.36 for 1, 10 and 100 uM ABT-888, respectively. Minimal cytotoxicity was noted when cells were treated with ABT-888 alone up to 100 uM. Caspase activity was not significantly increased when treated with ABT-888 (10 uM) alone (1.28 fold, p=0.077), but became significant when RT (2 Gy) was added (2.03 fold, p=0.006). This difference was further enhanced by the addition of gemcitabine (2.95 fold, p=0.004). Conclusions: ABT-888 is a potent radiosensitizer of pancreatic cancer cells with minimal cytotoxicity when used alone. Cell death is further potentiated by cotreatment with gemcitabine. Radiation-induced apoptosis was significantly enhanced by ABT-888 and gemcitabine, suggesting a synergistic mechanism of interference with DNA repair. These data are currently being validated in an orthotopic pancreatic cancer mouse model. No significant financial relationships to disclose.


2010 ◽  
Vol 49 ◽  
pp. S58-S59
Author(s):  
Juan Du ◽  
Amanda Kalen ◽  
Zita Sibenaller ◽  
Prabhat Goswami ◽  
Joseph Cullen

2020 ◽  
Vol 96 (12) ◽  
pp. 1528-1533
Author(s):  
Yunhui Jo ◽  
Geon Oh ◽  
Yongha Gi ◽  
Heehun Sung ◽  
Eun Bin Joo ◽  
...  

Pancreas ◽  
2011 ◽  
Vol 40 (5) ◽  
pp. 730-739 ◽  
Author(s):  
Lesley A. Mathews ◽  
Stephanie M. Cabarcas ◽  
Elaine M. Hurt ◽  
Xiaohu Zhang ◽  
Elizabeth M. Jaffee ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shruti Lal ◽  
Mahsa Zarei ◽  
Saswati N. Chand ◽  
Emanuela Dylgjeri ◽  
Nicole C. Mambelli-Lisboa ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 614
Author(s):  
Juan Du ◽  
Rory S. Carroll ◽  
Garett J. Steers ◽  
Brett A. Wagner ◽  
Brianne R. O’Leary ◽  
...  

Pancreatic cancer cells (PDACs) are more susceptible to an oxidative insult than normal cells, resulting in greater cytotoxicity upon exposure to agents that increase pro-oxidant levels. Pharmacological ascorbate (P-AscH−), i.e., large amounts given intravenously (IV), generates significant fluxes of hydrogen peroxide (H2O2), resulting in the killing of PDACs but not normal cells. Recent studies have demonstrated that P-AscH− radio-sensitizes PDAC but is a radioprotector to normal cells and tissues. Several mechanisms have been hypothesized to explain the dual roles of P-AscH− in radiation-induced toxicity including the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), RelB, as well as changes in bioenergetic profiles. We have found that P-AscH− in conjunction with radiation increases Nrf2 in both cancer cells and normal cells. Although P-AscH− with radiation decreases RelB in cancer cells vs. normal cells, the knockout of RelB does not radio-sensitize PDACs. Cellular bioenergetic profiles demonstrate that P-AscH− with radiation increases the ATP demand/production rate (glycolytic and oxidative phosphorylation) in both PDACs and normal cells. Knocking out catalase results in P-AscH− radio-sensitization in PDACs. In a phase I trial where P-AscH− was included as an adjuvant to the standard of care, short-term survivors had higher catalase levels in tumor tissue, compared to long-term survivors. These data suggest that P-AscH− radio-sensitizes PDACs through increased peroxide flux. Catalase levels could be a possible indicator for how tumors will respond to P-AscH−.


Sign in / Sign up

Export Citation Format

Share Document