scholarly journals Cross-Sectional HIV Incidence Estimation in HIV Prevention Research

2013 ◽  
Vol 63 ◽  
pp. S233-S239 ◽  
Author(s):  
Ron Brookmeyer ◽  
Oliver Laeyendecker ◽  
Deborah Donnell ◽  
Susan H. Eshleman
2019 ◽  
Author(s):  
Doug Morrison ◽  
Oliver Laeyendecker ◽  
Ron Brookmeyer

Author(s):  
Doug Morrison ◽  
Oliver Laeyendecker ◽  
Jacob Konikoff ◽  
Ron Brookmeyer

Abstract Considerable progress has been made in the development of approaches for HIV incidence estimation based on a cross-sectional survey for biomarkers of recent infection. Multiple biomarkers when used in combination can increase the precision of cross-sectional HIV incidence estimates. Multi-assay algorithms (MAAs) for cross-sectional HIV incidence estimation are hierarchical stepwise algorithms for testing the biological samples with multiple biomarkers. The objective of this paper is to consider some of the statistical challenges for addressing the problem of missing biomarkers in such testing algorithms. We consider several methods for handling missing biomarkers for (1) estimating the mean window period, and (2) estimating HIV incidence from a cross sectional survey once the mean window period has been determined. We develop a conditional estimation approach for addressing the missing data challenges and compare that method with two naïve approaches. Using MAAs developed for HIV subtype B, we evaluate the methods by simulation. We show that the two naïve estimation methods lead to biased results in most of the missing data scenarios considered. The proposed conditional approach protects against bias in all of the scenarios.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e78818 ◽  
Author(s):  
Oliver Laeyendecker ◽  
Michal Kulich ◽  
Deborah Donnell ◽  
Arnošt Komárek ◽  
Marek Omelka ◽  
...  

2021 ◽  
Author(s):  
Laurette Mhlanga ◽  
Grebe Eduard ◽  
Alex Welte

Abstract BackgroundMany surveys have attempted to estimate HIV incidence from cross-sectional data which includes ascertainment of ‘recent infection’, but the inevitable age and time structure of this data has never been systematically explored – no doubt partly because statistical precision in such estimates is often insufficient to allow for satisfactory disaggregation. Given the non-trivial age structure of HIV incidence and prevalence, and the enormous investments that have been made in such data sets, it is important to understand effective ways to extract valid age structure from these precious data sets. MethodsUsing a comprehensive demographic/epidemiological simulation platform developed for this, and some wider, purposes (documented in more detail separately) we simulated a complex ‘South Africa inspired’ HIV epidemic, with explicitly specified 1) age/time dependent incidence, 2) age/time dependent mortality for uninfected individuals, and 3) age/time/time-since-infection dependent mortality for infected individuals. In this simulated world, we conducted cross-sectional surveys at various times, and applied variants of the recent infection based incidence estimation methodology of Kassanjee et al. We analysed in considerable detail how to smooth, and average over, the age structure in these surveys to produce the incidence estimates, paying attention to the fundamental trade-off between bias and statistical error.ResultsWe summarise our detailed observations about incidence estimates, generated by various age smoothing or age disaggregation procedures, into a straightforward fully specified ‘one size fits most’ algorithm for processing the survey data into age-specific incidence estimates: 1) generalised linear regression to turn observations into ‘prevalence’ of ‘infection’ and ‘recent infection’ (logit, and complementary log log, link functions, respectively; fitting coefficients of up to cubic terms in age/time); 2) a ‘moving window’ data inclusion recipe which handles each age/time point of interest separately; 3) post hoc age averaging of resulting pseudo continuously fitted incidence; 4) bootstrapping as a generic variance/significance estimation procedure.ConclusionsAs far as we are aware, this is the first analysis of several fine details of how age structure in cross-sectional surveys interacts with recency-based incidence estimation. Our proposed default estimation procedure generates incidence estimates with negligible bias and near-optimal precision, and can be readily applied to complex survey data sets by any group in possession of such data. Our code is available, in part freely through the R computing platform, and in part upon request.


2018 ◽  
Vol 21 (2) ◽  
pp. e25082 ◽  
Author(s):  
Oliver Laeyendecker ◽  
Jacob Konikoff ◽  
Douglas E Morrison ◽  
Ronald Brookmeyer ◽  
Jing Wang ◽  
...  

2021 ◽  
Author(s):  
Laurette Mhlanga ◽  
Grebe Eduard ◽  
Alex Welte

Abstract BackgroundMany surveys have attempted to estimate HIV incidence from cross-sectional data which includes ascertainment of ‘recent infection’, but the inevitable age and time structure of this data has never been systematically explored – no doubt partly because statistical precision in such estimates is often insufficient to allow for satisfactory disaggregation. Given the non-trivial age structure of HIV incidence and prevalence, and the enormous investments that have been made in such data sets, it is important to understand effective ways to extract valid age structure from these precious data sets. MethodsUsing a comprehensive demographic/epidemiological simulation platform developed for this, and some wider, purposes (documented in more detail separately) we simulated a complex ‘South Africa inspired’ HIV epidemic, with explicitly specified 1) age/time dependent incidence, 2) age/time dependent mortality for uninfected individuals, and 3) age/time/time-since-infection dependent mortality for infected individuals. In this simulated world, we conducted cross-sectional surveys at various times, and applied variants of the recent infection based incidence estimation methodology of Kassanjee et al. We analysed in considerable detail how to smooth, and average over, the age structure in these surveys to produce the incidence estimates, paying attention to the fundamental trade-off between bias and statistical error.ResultsWe summarise our detailed observations about incidence estimates, generated by various age smoothing or age disaggregation procedures, into a straightforward fully specified ‘one size fits most’ algorithm for processing the survey data into age-specific incidence estimates: 1) generalised linear regression to turn observations into ‘prevalence’ of ‘infection’ and ‘recent infection’ (logit, and complementary log log, link functions, respectively; fitting coefficients of up to cubic terms in age/time); 2) a ‘moving window’ data inclusion recipe which handles each age/time point of interest separately; 3) post hoc age averaging of resulting pseudo continuously fitted incidence; 4) bootstrapping as a generic variance/significance estimation procedure.ConclusionsAs far as we are aware, this is the first analysis of several fine details of how age structure in cross-sectional surveys interacts with recency-based incidence estimation. Our proposed default estimation procedure generates incidence estimates with negligible bias and near-optimal precision, and can be readily applied to complex survey data sets by any group in possession of such data. Our code is available, in part freely through the R computing platform, and in part upon request.


2016 ◽  
Vol 44 (3) ◽  
pp. 149-158 ◽  
Author(s):  
Liza Dawson ◽  
Steffanie A Strathdee ◽  
Alex John London ◽  
Kathryn E Lancaster ◽  
Robert Klitzman ◽  
...  

Despite recent advances in HIV prevention and treatment, high HIV incidence persists among people who inject drugs (PWID). Difficult legal and political environments and lack of services for PWID likely contribute to high HIV incidence. Some advocates question whether any HIV prevention research is ethically justified in settings where healthcare system fails to provide basic services to PWID and where implementation of research findings is fraught with political barriers. Ethical challenges in research with PWID include concern about whether research evidence will be translated into practice; concerns that research might exacerbate background risks; and ethical challenges regarding the standard of HIV prevention in research. While these questions arise in other research settings, for research with PWID, these questions are especially controversial. This paper analyses four ethical questions in determining whether research could be ethically acceptable: (1) Can researchers ensure that research does not add to the burden of social harms and poor health experienced by PWID? (2) Should research be conducted in settings where it is uncertain whether research findings will be translated into practice? (3) When best practices in prevention and care are not locally available, what standard of care and prevention is ethically appropriate? (4) Does the conduct of research in settings with oppressive policies constitute complicity? We outline specific criteria to address these four ethical challenges. We also urge researchers to join the call to action for policy change to provide proven safe and effective HIV prevention and harm reduction interventions for PWID around the world.


Sign in / Sign up

Export Citation Format

Share Document