Diagnostic Efficiency of Split-Bolus Dual-Energy Computed Tomography for Patients With Suspected Urinary Stones

2015 ◽  
Vol 39 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Yu Jin Yeo ◽  
See Hyung Kim ◽  
Mi Jeong Kim ◽  
Young Hwan Kim ◽  
Seung Hyun Cho ◽  
...  
2019 ◽  
Vol 43 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Hasan Erdogan ◽  
Osman Temizoz ◽  
Mustafa Koplay ◽  
Bahadir Ozturk

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinghao Chen ◽  
Jie Zhou ◽  
Jushun Yang ◽  
Ruochen Cong ◽  
Jinjie Sun ◽  
...  

Abstract Background This retrospective study aimed to investigate the usefulness of the optimized kiloelectron volt (keV) for virtual monoenergetic imaging (VMI) combined with iodine map in dual-energy computed tomography enterography (DECTE) in the diagnosis of Crohn’s disease (CD). Methods Seventy-two patients (mean age: 41.89 ± 17.28 years) with negative computed tomography enterography (CTE) were enrolled for investigating the optimized VMI keV in DECTE by comparing subjective and objective parameters of VMIs that were reconstructed from 40 to 90 keV. Moreover, 68 patients (38.27 ± 15.10 years; 35 normal and 33 CD) were included for evaluating the diagnostic efficacy of DECTE iodine map at the optimized VMI energy level and routine CTE for CD and active CD. Statistical analysis for all data was conducted. Results Objective and subjective imaging evaluations showed the best results at 60 keV for VMIs. The CT values of the normal group, active subgroup, and CD group during the small intestinal phase at routine 120 kVp or 60 keV VMI had significant differences. The diagnostic efficacy of an iodine map was the best when NIC = 4% or fat value = 45.8% for CD, whereas NIC < 0.35 or the fat value < 0.38 for active CD. The combined routine CTE and optimized VMI improved the diagnostic efficacy (P < 0.001). Conclusions VMI at 60 keV provided the best imaging quality on DECTE. NIC and fat value provided important basis for active CD evaluation. Routine CTE combined with VMI at 60 keV improved the diagnostic efficiency for CD.


Urologiia ◽  
2017 ◽  
Vol 3_2017 ◽  
pp. 98-103 ◽  
Author(s):  
A.G. Martov Martov ◽  
D.A. Mazurenko Mazurenko ◽  
M.M. Klimkova Klimkova ◽  
V.E. Sinitsyn Sinitsyn ◽  
L.A. Nersisyan Nersisyan ◽  
...  

2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Xianghu Meng ◽  
Xueying Sun ◽  
Rong Cong ◽  
Liang Qi ◽  
Zengjun Wang ◽  
...  

Background: Most previous studies have demonstrated the possibility of using dual-source dual-energy computed tomography (DSDECT) to distinguish pure stones with high accuracy. While stones are usually composed of a mixture of substances, very few studies have focused on these stone compositions. Objectives: To retrospectively evaluate the diagnostic accuracy of DSDECT in predicting the composition of mixed urinary calculi in vivo compared to the postoperative infrared spectroscopy (IRS) for stone analysis. Materials and Methods: We retrospectively included 111 patients with 117 mixed urinary stones, detected by IRS, who underwent DSDECT between June 2018 and March 2020. Patients diagnosed with urolithiasis were examined by DSDECT preoperatively. The final stone composition was detected by IRS in vitro postoperatively. Also, the stone composition predicted by DSDECT was compared to the IRS results, known as the reference standard. Results: According to the results of IRS, 117 mixed urinary calculi, composed of a main constituent and minor admixtures, were divided into four groups: calcium oxalate (CaOx)-hydroxyapatite (HA) (n = 70); HA-CaOx (n = 36); uric acid (UA)-CaOx (n = 8); and cystine (CYS)-HA (n = 3). The accuracy of DSDECT in predicting different components of mixed urinary stones was 68.4%, 64.1%, 97.4%, and 97.5% for the CaOx-HA, HA-CaOx, UA-CaOx, and CYS-HA stones, respectively. The imaging characteristics of different mixed urinary stones, as shown by DSDECT, revealed that the CaOx-HA ratio value was lower than that of HA-CaOx (1.59 ± 0.11 vs. 1.66 ± 0.22; P < 0.05). Meanwhile, the computed tomography (CT) values of CaOx-HA under 150 kV were higher than those of HA-CaOx (915.41 ± 226.84 vs .799.56 ± 252.01; P < 0.05). Conclusion: Although DSDECT has a relatively low accuracy for predicting the components of CaOx-HA and HA-CaOx in vivo, its combination with the measured ratio and CT values may help differentiate these stones.


2019 ◽  
Author(s):  
Torsten Diekhoff ◽  
Michael Fuchs ◽  
Nils Engelhard ◽  
Kay-Geert Hermann ◽  
Michael Putzier ◽  
...  

2011 ◽  
Vol 12 (1) ◽  
pp. 62-63 ◽  
Author(s):  
Thomas Henzler ◽  
Steffen Diehl ◽  
Susanne Jochum ◽  
Tim Sueselbeck ◽  
Stefan O Schoenberg ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Masakatsu Tsurusaki ◽  
Keitaro Sofue ◽  
Masatoshi Hori ◽  
Kosuke Sasaki ◽  
Kazunari Ishii ◽  
...  

Dual-energy computed tomography (DECT) is an imaging technique based on data acquisition at two different energy settings. Recent advances in CT have allowed data acquisitions and simultaneous analyses of X-rays at two energy levels, and have resulted in novel developments in the field of abdominal imaging. The use of low and high X-ray tube voltages in DECT provide fused images that improve the detection of liver tumors owing to the higher contrast-to-noise ratio (CNR) of the tumor compared with the liver. The use of contrast agents in CT scanning improves image quality by enhancing the CNR and signal-to-noise ratio while reducing beam-hardening artifacts. DECT can improve detection and characterization of hepatic abnormalities, including mass lesions. The technique can also be used for the diagnosis of steatosis and iron overload. This article reviews and illustrates the different applications of DECT in liver imaging.


Sign in / Sign up

Export Citation Format

Share Document