Comparison of Three-Dimensional Printing and Computer-aided Engineering in Presurgical Volumetric Assessment of Bilateral Alveolar Clefts

2020 ◽  
Vol 31 (2) ◽  
pp. 412-415
Author(s):  
Shuxiu Chen ◽  
Bing Liu ◽  
Jing Liu ◽  
Ningbei Yin ◽  
Yongqian Wang
2020 ◽  
Vol 15 ◽  
pp. 155892502091762
Author(s):  
Dustin Ahrendt ◽  
Arturo Romero Karam

Today, additive manufacturing, also called three-dimensional printing, is used for producing prototypes as well as other products for various industrial sectors. Although this technology is already well established in the automotive, aviation and space travel, building, dental and medical sectors, its integration in the textile and ready-made industry is still in progress. At present, there is a lack of specific application scenarios for the combination of three-dimensional printing and textile materials, apart from fashion and shoe design. Hence, this article presents a digital computer-aided engineering–supported process to manufacture customized orthopaedic devices by three-dimensional printing directly onto a textile fabric. State-of-the-art fabrication methods for orthoses are typically labour intensive. The combination of three-dimensional scanning, computer-aided design modelling and three-dimensional printing onto textile materials open up new possibilities for producing custom-made products. After three-dimensional scanning of a patient’s individual body shape, the surface is prepared for constructing the textile pattern cuts by reverse engineering. The transformation of the designed three-dimensional patterns into two-dimensional is software supported. Additional positioning lines in accordance with specific body measurements are transferred onto the two-dimensional pattern cuts, which are then used as the basis for the design of the three-dimensional printed functional elements. Subsequently, the design is saved in STL (Standard Triangulation/Tessellation Language) file format, prepared by slicing and directly printed onto textile pattern cuts by means of fused deposition modelling. The last manufacturing step involves the assembly of the textile fabric. The proposed process is demonstrated by an example application scenario, thus proving its potential for industrial use in the textile and ready-made industry.


2019 ◽  
Vol 72 (7) ◽  
pp. 1198-1206 ◽  
Author(s):  
Cheng-I Yen ◽  
Jonathan A. Zelken ◽  
Chun-Shin Chang ◽  
Lun-Jou Lo ◽  
Jui-Yung Yang ◽  
...  

2016 ◽  
Vol 100 (7) ◽  
pp. 879-881 ◽  
Author(s):  
Sébastien Ruiters ◽  
Yi Sun ◽  
Stéphan de Jong ◽  
Constantinus Politis ◽  
Ilse Mombaerts

2019 ◽  
Vol 10 ◽  
pp. 204173141882479 ◽  
Author(s):  
Hee-Gyeong Yi ◽  
Yeong-Jin Choi ◽  
Jin Woo Jung ◽  
Jinah Jang ◽  
Tae-Ha Song ◽  
...  

Autologous cartilages or synthetic nasal implants have been utilized in augmentative rhinoplasty to reconstruct the nasal shape for therapeutic and cosmetic purposes. Autologous cartilage is considered to be an ideal graft, but has drawbacks, such as limited cartilage source, requirements of additional surgery for obtaining autologous cartilage, and donor site morbidity. In contrast, synthetic nasal implants are abundantly available but have low biocompatibility than the autologous cartilages. Moreover, the currently used nasal cartilage grafts involve additional reshaping processes, by meticulous manual carving during surgery to fit the diverse nose shape of each patient. The final shapes of the manually tailored implants are highly dependent on the surgeons’ proficiency and often result in patient dissatisfaction and even undesired separation of the implant. This study describes a new process of rhinoplasty, which integrates three-dimensional printing and tissue engineering approaches. We established a serial procedure based on computer-aided design to generate a three-dimensional model of customized nasal implant, and the model was fabricated through three-dimensional printing. An engineered nasal cartilage implant was generated by injecting cartilage-derived hydrogel containing human adipose-derived stem cells into the implant containing the octahedral interior architecture. We observed remarkable expression levels of chondrogenic markers from the human adipose-derived stem cells grown in the engineered nasal cartilage with the cartilage-derived hydrogel. In addition, the engineered nasal cartilage, which was implanted into mouse subcutaneous region, exhibited maintenance of the exquisite shape and structure, and striking formation of the cartilaginous tissues for 12 weeks. We expect that the developed process, which combines computer-aided design, three-dimensional printing, and tissue-derived hydrogel, would be beneficial in generating implants of other types of tissue.


2017 ◽  
Vol 42 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Sarah Jane Day ◽  
Shaun Patrick Riley

Background: The evolution of three-dimensional printing into prosthetics has opened conversations about the availability and cost of prostheses. This report will discuss how a prosthetic team incorporated additive manufacture techniques into the treatment of a patient with a partial hand amputation to create and test a unique assistive device which he could use to hold his French horn. Case description and methods: Using a process of shape capture, photogrammetry, computer-aided design and finite element analysis, a suitable assistive device was designed and tested. The design was fabricated using three-dimensional printing. Patient satisfaction was measured using a Pugh’s Matrix™, and a cost comparison was made between the process used and traditional manufacturing. Findings and outcomes: Patient satisfaction was high. The three-dimensional printed devices were 56% cheaper to fabricate than a similar laminated device. Conclusion: Computer-aided design and three-dimensional printing proved to be an effective method for designing, testing and fabricating a unique assistive device. Clinical relevance CAD and 3D printing techniques can enable devices to be designed, tested and fabricated cheaper than when using traditional techniques. This may lead to improvements in quality and accessibility.


2002 ◽  
Vol 124 (03) ◽  
pp. 48-52
Author(s):  
John DeGaspari

This article highlights the striking facts about rapid prototyping; a process that fabricates physical objects directly from computer-aided design sources. The use of rapid prototyping as a replacement for injection molding is still the overwhelming exception and may always be limited to a very narrow niche. Three-dimensional printing has also seen the introduction of materials that improve the durability and appearance of conceptual prototype parts. Z Corp. of Burlington is incorporating new pigments into its binders for its starch- and plaster-based materials. The pigments result in truer and brighter colors and replace the dyes that were previously incorporated into the liquid binders. The company has recently introduced a urethane infiltrant that increases part strength significantly and allows parts with delicate geometries to be.


Sign in / Sign up

Export Citation Format

Share Document