Hard Tissue Preservation and Recovery in Minimally Invasive Alveolar Surgery Using Three-Dimensional Printing Guide Plate

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Xiaopeng Tang ◽  
Qingguo Lai ◽  
Runqi Xue ◽  
Jiangbo Ci
2021 ◽  
Vol 12 ◽  
Author(s):  
Ke Li ◽  
Xiangqian Ding ◽  
Qingbo Wang ◽  
Gangxian Fan ◽  
Wei Guo ◽  
...  

Background: Hypertensive intracerebral hemorrhage (HICH) is an acute, severe neurosurgical disease. Puncture drainage of the hematoma has gradually been accepted as a surgical treatment for HICH because of its minimally invasive nature. The precision of the puncture is extremely high because of particular physiological functions. This study was performed to explore the effect of a navigation mold created by three-dimensional printing (3DP) technology in the surgical treatment of HICH.Material and methods: We conducted a retrospective analysis of all consecutive patients with ICH treated with minimally invasive surgery using 3DP navigation or craniotomy to remove the hematoma through a small bone window at the Binzhou Medical University Hospital from June 2017 to March 2019. In total, 61 patients were treated with minimally invasive surgery using 3DP navigation (3DP group), and 67 patients were treated with craniotomy to remove the hematoma through a small bone window (craniotomy group). A comparative study of the two groups was conducted to assess the preoperative and postoperative conditions.Results: The duration of the surgery was significantly longer in the craniotomy group than in the 3DP group (3.27 ± 1.14 h vs. 1.52 ± 0.23 h). Postoperative complication rates were significantly lower in the 3DP group than in the craniotomy group (18.0 vs. 34.3%). Moreover, the rate of patients with a Glasgow Outcome Scale score ≥4 points was not statistically significantly different in the two groups.Conclusion: Minimally invasive surgery assisted by 3DP navigation to treat patients with HICH appears to be safe and effective. The 3DP technique may improve the individualization and accuracy of the surgery.


Author(s):  
Toshiyuki Yamada ◽  
Motohiko Osaka ◽  
Tomoya Uchimuro ◽  
Ryogen Yoon ◽  
Toshiaki Morikawa ◽  
...  

Objective As the use of minimally invasive surgery in cardiothoracic surgery increases, so does the need for simulation and training. We developed a heart model for simulation and training of minimally invasive cardiac surgery, particularly minimally invasive mitral valve repair using our new three-dimensional printing system. Methods Digital imaging and communication in medicine data from patient computed tomography, three-dimensional computer-aided design, and three-dimensional printing helped create replicas of the heart and thoracic cavity. A polyvinyl alcohol model material with a texture and physical properties similar to those of heart tissue was initially used in mitral valve replicas to simulate surgical procedures. To develop this material, we mechanically investigated the composition of each part of the porcine heart. Results We investigated the elastic modulus and breaking strength of the porcine heart. Based on investigation results, the cardiac model was set at rupture strength 20 MPa, elastic modulus 0.17 MPa, and moisture content 85%. This provided a biotexture and feeling exactly like a patient heart. Computed tomography scans confirmed that the model shape was nearly the same as that of a human heart. We simulated minimally invasive mitral valve repair, including ring annuloplasty, chordal reconstruction, resection and suture, and edge-to-edge repair. Full surgery simulations using this model used minimally invasive cardiac surgery tools including a robot. Conclusions This life-like model can be used as a standard simulator to train younger, less experienced surgeons to practice minimally invasive cardiac surgery procedures and may help develop new operative tools.


2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


Author(s):  
Leandro Ejnisman ◽  
Bruno Gobbato ◽  
Andre Ferrari de França Camargo ◽  
Eduardo Zancul

Sign in / Sign up

Export Citation Format

Share Document