scholarly journals Environmental spatial and temporal variability and its role in non-favoured mutant dynamics

2019 ◽  
Vol 16 (157) ◽  
pp. 20180781 ◽  
Author(s):  
Suzan Farhang-Sardroodi ◽  
Amir H. Darooneh ◽  
Mohammad Kohandel ◽  
Natalia L. Komarova

Understanding how environmental variability (or randomness) affects evolution is of fundamental importance for biology. The presence of temporal or spatial variability significantly affects the competition dynamics in populations, and gives rise to some counterintuitive observations. In this paper, we consider both birth–death (BD) or death–birth (DB) Moran processes, which are set up on a circular or a complete graph. We investigate spatial and temporal variability affecting division and/or death parameters. Assuming that mutant and wild-type fitness parameters are drawn from an identical distribution, we study mutant fixation probability and timing. We demonstrate that temporal and spatial types of variability possess fundamentally different properties. Under temporal randomness, in a completely mixed system, minority mutants experience (i) higher than neutral fixation probability and a higher mean conditional fixation time, if the division rates are affected by randomness and (ii) lower fixation probability and lower mean conditional fixation time if the death rates are affected. Once spatial restrictions are imposed, however, these effects completely disappear, and mutants in a circular graph experience neutral dynamics, but only for the DB update rule in case (i) and for the BD rule in case (ii) above. In contrast to this, in the case of spatially variable environment, both for BD/DB processes, both for complete/circular graph and both for division/death rates affected, minority mutants experience a higher than neutral probability of fixation. Fixation time, however, is increased by randomness on a circle, while it decreases for complete graphs under random division rates. A basic difference between temporal and spatial kinds of variability is the types of correlations that occur in the system. Under temporal randomness, mutants are spatially correlated with each other (they simply have equal fitness values at a given moment of time; the same holds for wild-types). Under spatial randomness, there are subtler, temporal correlations among mutant and wild-type cells, which manifest themselves by cells of each type ‘claiming’ better spots for themselves. Applications of this theory include cancer generation and biofilm dynamics.

2016 ◽  
Author(s):  
Lieke Melsen ◽  
Adriaan Teuling ◽  
Paul Torfs ◽  
Massimiliano Zappa ◽  
Naoki Mizukami ◽  
...  

Abstract. The transfer of parameter sets over different temporal and spatial resolutions is common practice in many large-domain hydrological modelling studies. The degree to which parameters are transferable across temporal and spatial resolutions is an indicator for how well spatial and temporal variability are represented in the models. A large degree of transferability may well indicate a poor representation of such variability in the employed models. To investigate parameter transferability over resolution in time and space we have set-up a study in which the Variable Infiltration Capacity (VIC) model for the Thur basin in Switzerland was run with four different spatial resolutions (1×1 km, 5×5 km, 10×10 km, lumped) and evaluated for three relevant temporal resolutions (hour, day, month), both applied with uniform and distributed forcing. The model was run 3,150 times using a Hierarchical Latin Hypercube Sample and the best 1 % of the runs was selected as behavioural. The overlap in behavioural sets for different spatial and temporal resolutions was used as indicator for parameter transferability. A key result from this study is that the overlap in parameter sets for different spatial resolutions was much larger than for different temporal resolutions, also when the forcing was applied in a distributed fashion. This result suggests that it is easier to transfer parameters across different spatial resolutions than across different temporal resolutions. However, the result also indicates a substantial underestimation in the spatial variability represented in the hydrological simulations, suggesting that the high spatial transferability may occur because the current generation of large-domain models have an inadequate representation of spatial variability and hydrologic connectivity. The results presented in this paper provide a strong motivation to further investigate and substantially improve the representation of spatial and temporal variability in large-domain hydrological models.


2016 ◽  
Vol 20 (6) ◽  
pp. 2207-2226 ◽  
Author(s):  
Lieke Melsen ◽  
Adriaan Teuling ◽  
Paul Torfs ◽  
Massimiliano Zappa ◽  
Naoki Mizukami ◽  
...  

Abstract. The transfer of parameter sets over different temporal and spatial resolutions is common practice in many large-domain hydrological modelling studies. The degree to which parameters are transferable across temporal and spatial resolutions is an indicator of how well spatial and temporal variability is represented in the models. A large degree of transferability may well indicate a poor representation of such variability in the employed models. To investigate parameter transferability over resolution in time and space we have set up a study in which the Variable Infiltration Capacity (VIC) model for the Thur basin in Switzerland was run with four different spatial resolutions (1 km  ×  1 km, 5 km  ×  5 km, 10 km  ×  10 km, lumped) and evaluated for three relevant temporal resolutions (hour, day, month), both applied with uniform and distributed forcing. The model was run 3150 times using the Hierarchical Latin Hypercube Sample and the best 1 % of the runs was selected as behavioural. The overlap in behavioural sets for different spatial and temporal resolutions was used as an indicator of parameter transferability. A key result from this study is that the overlap in parameter sets for different spatial resolutions was much larger than for different temporal resolutions, also when the forcing was applied in a distributed fashion. This result suggests that it is easier to transfer parameters across different spatial resolutions than across different temporal resolutions. However, the result also indicates a substantial underestimation in the spatial variability represented in the hydrological simulations, suggesting that the high spatial transferability may occur because the current generation of large-domain models has an inadequate representation of spatial variability and hydrologic connectivity. The results presented in this paper provide a strong motivation to further investigate and substantially improve the representation of spatial and temporal variability in large-domain hydrological models.


Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 847 ◽  
Author(s):  
Weidong Liu ◽  
Matthijs Tollenaar ◽  
Greg Stewart ◽  
William Deen

Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


Sign in / Sign up

Export Citation Format

Share Document