The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid

When a viscous fluid filling the voids in a porous medium is driven forwards by the pressure of another driving fluid, the interface between them is liable to be unstable if the driving fluid is the less viscous of the two. This condition occurs in oil fields. To describe the normal modes of small disturbances from a plane interface and their rate of growth, it is necessary to know, or to assume one knows, the conditions which must be satisfied at the interface. The simplest assumption, that the fluids remain completely separated along a definite interface, leads to formulae which are analogous to known expressions developed by scientists working in the oil industry, and also analogous to expressions representing the instability of accelerated interfaces between fluids of different densities. In the latter case the instability develops into round-ended fingers of less dense fluid penetrating into the more dense one. Experiments in which a viscous fluid confined between closely spaced parallel sheets of glass, a Hele-Shaw cell, is driven out by a less viscous one reveal a similar state. The motion in a Hele-Shaw cell is mathematically analogous to two-dimensional flow in a porous medium. Analysis which assumes continuity of pressure through the interface shows that a flow is possible in which equally spaced fingers advance steadily. The ratio λ = (width of finger)/(spacing of fingers) appears as the parameter in a singly infinite set of such motions, all of which appear equally possible. Experiments in which various fluids were forced into a narrow Hele-Shaw cell showed that single fingers can be produced, and that unless the flow is very slow λ = (width of finger)/(width of channel) is close to ½, so that behind the tips of the advancing fingers the widths of the two columns of fluid are equal. When λ = ½ the calculated form of the fingers is very close to that which is registered photographically in the Hele-Shaw cell, but at very slow speeds where the measured value of λ increased from ½ to the limit 1.0 as the speed decreased to zero, there were considerable differences. Assuming that these might be due to surface tension, experiments were made in which a fluid of small viscosity, air or water, displaced a much more viscous oil. It is to be expected in that case that λ would be a function of μ U/T only, where μ is the viscosity, U the speed of advance and T the interfacial tension. This was verified using air as the less viscous fluid penetrating two oils of viscosities 0.30 and 4.5 poises.

2011 ◽  
Vol 668 ◽  
pp. 436-445 ◽  
Author(s):  
ANDONG HE ◽  
ANDREW BELMONTE

We present a nonlinear unsteady Darcy's equation which includes inertial effects for flows in a porous medium or Hele-Shaw cell and discuss the conditions under which it reduces to the classical Darcy's law. In the absence of surface tension we derive a generalized Polubarinova–Galin equation in a circular geometry, using the method of conformal mapping. The linear stability of the base-flow state is examined by perturbing the corresponding conformal map. We show that inertia always has a tendency to stabilize the interface, regardless of whether a less viscous fluid is displacing a more viscous fluid or vice versa.


1969 ◽  
Vol 39 (3) ◽  
pp. 477-495 ◽  
Author(s):  
R. A. Wooding

Waves at an unstable horizontal interface between two fluids moving vertically through a saturated porous medium are observed to grow rapidly to become fingers (i.e. the amplitude greatly exceeds the wavelength). For a diffusing interface, in experiments using a Hele-Shaw cell, the mean amplitude taken over many fingers grows approximately as (time)2, followed by a transition to a growth proportional to time. Correspondingly, the mean wave-number decreases approximately as (time)−½. Because of the rapid increase in amplitude, longitudinal dispersion ultimately becomes negligible relative to wave growth. To represent the observed quantities at large time, the transport equation is suitably weighted and averaged over the horizontal plane. Hyperbolic equations result, and the ascending and descending zones containing the fronts of the fingers are replaced by discontinuities. These averaged equations form an unclosed set, but closure is achieved by assuming a law for the mean wave-number based on similarity. It is found that the mean amplitude is fairly insensitive to changes in wave-number. Numerical solutions of the averaged equations give more detailed information about the growth behaviour, in excellent agreement with the similarity results and with the Hele-Shaw experiments.


1969 ◽  
Vol 9 (03) ◽  
pp. 293-300 ◽  
Author(s):  
J.E. Varnon ◽  
R.A. Greenkorn

Abstract This paper reports an investigation of unstable fingering in two-fluid flow in a porous medium to determine if lambda the dimensionless finger width, is unique For a viscous finger A is the ratio of finger width to the distance between the tips of the two trailing fingers adjacent to the leading finger. For a gravity finger lambda is defined as the ratio of finger width, to "height" of the medium perpendicular to hulk flow. This work confirms previous experiments and existing theory that for viscous fingering lambda approaches a value of 0.5 with increasing ratio of viscous to interfacial force. However, for a given fluid pair and given, medium, this ratio can he increased only by increasing the, velocity. Experiments on gas liquid systems show that the asymptotic value of lambda with velocity is not always 0.5. Apparently, for gas-liquid systems, the influence of the interfacial force cannot always he eliminated by increasing the velocity. For such systems lambda is a function of fluid pair and media permeability. If the gravity force normal to the hulk permeability. If the gravity force normal to the hulk flow is active, it damps out the viscous fingers except for an underlying or overlying finger. The dimensionless width of this gravity finger strongly depends on velocity and height of the medium, as well as the fluid and media properties. The existing experiments and theories are reviewed and the gravity, stable, and viscous flow regimes are described in view of these experiments and theories. The existence of a gravity-dominated unstable regime, a gravity-viscous balanced stable regime, and a viscous-anminated regime was demonstrated experimentally by increasing flow velocity bin a rectangular glass head model. Asymptotic values of the dimensionless finger width were determined in various-sized Hele-Shaw models with gravity perpendicular and parallel to flow. The dimensionless perpendicular and parallel to flow. The dimensionless finger width lambda was determined as a function of applied force, flow resistance, and fluid properties. The results are interpreted dimensionally. Some comments are made concerning possible scaling and meaningful extensions of theory to describe these regimes in three-dimensional flow. Previous description of unstable two-fluid flow in porous media is mainly restricted to studies of viscous-dominated instability. The direction of this study is to provide data and understanding to consider the more realistic problem of predicting flow in three dimensions that may result in instabilities that are combinations of all, four flow regimes. Introduction The unstable flow of two fluids is characterized by interface changes between the fluids as a result of changes in relative forces. In a given porous medium and for a given fluid pair the gravity force dominates flow at low displacement velocities. As the velocity increases the viscous forces begin to affect flow significantly, and eventually there is a balance between effects of the gravity and viscous forces. As velocity increases further, the viscous force dominates flow. In the plane parallel to gravity, four flow regimes result as the velocity is increased: a gravity-induced stable flow regime; a gravity-dominated unstable flow regime; a stable regime resulting from a balance between gravity and viscous forces; and a viscous-induced unstable flow regime. The gravity-induced stable regime is represented schematically in Fig. 1a. This general flow pattern persists with the displacing fluid contacting all of persists with the displacing fluid contacting all of the in-place fluid until the interface becomes parallel to the bulk flow. At this velocity a gravity finger forms, and the interface, is unstable in that the length of the gravity finger grows and the fluid behind the nose of the finger is practically nonmobile because of the small pressure gradient along the finger. The gravity-dominated unstable flow is shown schematically in Fig. 1b. As the injection rate is increased, the gravity finger thickens, perhaps until it spans the medium creating a stable interface where all of the in-place, fluid is again mobile. This regime would, not occur in the absence of gravity. It occurs due to the counter effects of the gravity and viscous forces (Fig. 1c). As the velocity of the displacing fluid increases, the viscous forces dominate, and, the interface breaks into viscous fingers (Fig. 1d). SPEJ p. 293


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


Sign in / Sign up

Export Citation Format

Share Document