The second virial coefficient of benzene at low pressures

The density of benzene vapour at about 70% saturation at 22 °C has been determined experimentally by the microbalance method using nitrogen as the comparison gas. The adsorption of the benzene vapour on the particular working parts of the two balances used in the work was determined in separate experiments, so that full correction of the density determinations for this influence was possible. The second virial coefficient of the vapour has been deduced at 22 °C and, from similar measurements, at 35 °C.

Tables are given for the second virial coefficient and Joule-Thomson coefficient (at low pressures) of a gas whose molecules are non-polar, approximately cylindrical, and stiff. The tables cover the range of length/breadth ratio consistent with the last assumption. The tables can be used for the analysis of observed virial coefficients of gases whose molecules satisfy these assumptions, and give an estimate of the intermolecular forces between these molecules at any relative orientation. For small ratio of length to breadth the virial coefficient is nearly the same as that of a spherical molecule with certain mean values of the parameters defining the intermolecular field. This makes it possible to relate these mean parameters to the critical constants and to the parachor. The virial coefficients of nine gases are analysed. The data on seven hydrocarbons enable one to estimate the law of force between molecules of the lower non-polar hydrocarbons.


1995 ◽  
Vol 60 (10) ◽  
pp. 1641-1652 ◽  
Author(s):  
Henri C. Benoît ◽  
Claude Strazielle

It has been shown that in light scattering experiments with polymers replacement of a solvent by a solvent mixture causes problems due to preferential adsorption of one of the solvents. The present paper extends this theory to be applicable to any angle of observation and any concentration by using the random phase approximation theory proposed by de Gennes. The corresponding formulas provide expressions for molecular weight, gyration radius, and the second virial coefficient, which enables measurements of these quantities provided enough information on molecular and thermodynamic quantities is available.


1991 ◽  
Vol 44 (19) ◽  
pp. 10731-10735 ◽  
Author(s):  
Akira Suzuki ◽  
M. K. Srivastava ◽  
R. K. Bhaduri ◽  
J. Law

1961 ◽  
Vol 39 (11) ◽  
pp. 1563-1572 ◽  
Author(s):  
J. Van Kranendonk

A simple derivation is given of the quantum mechanical expression for the second virial coefficient in terms of the scattering phase shifts. The derivation does not require the introduction of a quantization volume and is based on the identity R(z)−R0(z) = R0(z)H1R(z), where R0(z) and R(z) are the resolvent operators corresponding to the unperturbed and total Hamiltonians H0 and H0 + H1 respectively. The derivation is valid in particular for a gas of excitons in a crystal for which the shape of the waves describing the relative motion of two excitons is not spherical, and, in general, varies with varying energy. The validity of the phase shift formula is demonstrated explicitly for this case by considering a quantization volume with a boundary the shape of which varies with the energy in such a way that for each energy the boundary is a surface of constant phase. The density of states prescribed by the phase shift formula is shown to result if the enclosed volume is required to be the same for all energies.


2018 ◽  
Vol 73 (2) ◽  
pp. 121-125
Author(s):  
Bahtiyar A. Mamedov ◽  
Elif Somuncu ◽  
Iskender M. Askerov

AbstractWe present a new analytical approximation for determining the compressibility factor of real gases at various temperature values. This algorithm is suitable for the accurate evaluation of the compressibility factor using the second virial coefficient with a Lennard–Jones (12-6) potential. Numerical examples are presented for the gases H2, N2, He, CO2, CH4 and air, and the results are compared with other studies in the literature. Our results showed good agreement with the data in the literature. The consistency of the results demonstrates the effectiveness of our analytical approximation for real gases.


1969 ◽  
Vol 50 (9) ◽  
pp. 4034-4055 ◽  
Author(s):  
M. E. Boyd ◽  
S. Y. Larsen ◽  
J. E. Kilpatrick

Sign in / Sign up

Export Citation Format

Share Document