Possible new interstellar masers

A collisional mechanism for the production of population inversion in the Λ -doublet sub-levels of the lowest rotational energy levels of diatomic molecules is considered. This leads to the conclusion that not only should the known celestial masers, OH and CH, be capable of exhibiting stimulated emission, but also H F + , HC1 + and SH.

1992 ◽  
Vol 150 ◽  
pp. 245-247
Author(s):  
Jacques R.D. Lepine ◽  
Astrid Heske

We discuss a simple H2O maser pumping mechanism in which the population inversion of the masing levels takes place during the quick cooling of the gas behind a shock wave. The population of the rotational energy levels in the initial hot state and final cool state of the molecular gas, and the decay paths between levels are analysed to calculate the average number of 22 GHz photons emitted per H2O molecule in the cooling process.


1962 ◽  
Vol 40 (5) ◽  
pp. 598-606 ◽  
Author(s):  
Jon T. Hougen

Expressions are derived for the rotational energy levels of diatomic molecules in 4Σ states. These expressions contain two rho-type doubling parameters (γ's), and thus differ from earlier expressions which contain only one such parameter. The new expressions are in better agreement with the experimental data, though some discrepancy still exists.


1985 ◽  
Vol 63 (9) ◽  
pp. 1201-1204 ◽  
Author(s):  
L. Wolniewicz ◽  
J. D. Poll

A new method for calculating vibration–rotational energies of diatomic molecules is discussed and applied to the case of HD+. This method is designed to obtain accurate results for all vibrational states including those close to the dissociation limit. Nonadiabatic, relativistic, and radiative effects are taken into account for all the bound vibrational states with rotational quantum numbers J ≤ 5; the estimated accuracy is of the order of 0.001 cm−1.


1977 ◽  
Vol 55 (17) ◽  
pp. 1499-1509 ◽  
Author(s):  
S. Schneider ◽  
R. Spitzer

The interaction in a frequency-dispersive medium of a coherent electromagnetic wave with an electron moving faster than a critical (Mach) speed produces electromagnetic radiation with novel characteristics. Theory predicts emission of intense radiation in the form of shock fronts at specific angles from the electron trajectory. The shock fronts are correlated with specific frequencies shifted significantly from that of the incident wave. We have named this effect stimulated electromagnetic shock radiation (SESR). The shock frequencies depend dynamically on the populations of the energy levels that give rise to the medium resonances. A given shock frequency changes from below to above the resonance frequency of the medium with which it is associated as the populations of the two energy levels corresponding to this resonance frequency change from an equilibrium distribution to an inverted one. This dynamic resonance crossing points to the possibility of new synergisms between SESR emission and stimulated emission between discrete levels.


Sign in / Sign up

Export Citation Format

Share Document