Stimulated electromagnetic shock radiation (SESR) in frequency-dispersive media

1977 ◽  
Vol 55 (17) ◽  
pp. 1499-1509 ◽  
Author(s):  
S. Schneider ◽  
R. Spitzer

The interaction in a frequency-dispersive medium of a coherent electromagnetic wave with an electron moving faster than a critical (Mach) speed produces electromagnetic radiation with novel characteristics. Theory predicts emission of intense radiation in the form of shock fronts at specific angles from the electron trajectory. The shock fronts are correlated with specific frequencies shifted significantly from that of the incident wave. We have named this effect stimulated electromagnetic shock radiation (SESR). The shock frequencies depend dynamically on the populations of the energy levels that give rise to the medium resonances. A given shock frequency changes from below to above the resonance frequency of the medium with which it is associated as the populations of the two energy levels corresponding to this resonance frequency change from an equilibrium distribution to an inverted one. This dynamic resonance crossing points to the possibility of new synergisms between SESR emission and stimulated emission between discrete levels.

2007 ◽  
Vol 70 (11) ◽  
pp. 2651-2655 ◽  
Author(s):  
DAVID MARALDO ◽  
RAJ MUTHARASAN

We show the detection of 100 cells per ml of Escherichia coli O157:H7 in the presence of spinach, spring lettuce mix, and ground beef washes and particulate matter with piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The PEMC sensors (sensing area, 2 mm2) were immobilized with polyclonal antibody specific to E. coli O157:H7 (EC) and were exposed to 10 aqueous washes of locally purchased spinach, spring lettuce mix, and ground beef for testing if EC was present. Absence of resonance frequency shift indicated that EC was not present in the 30 samples tested. Following the last sample in each food matrix, 1,000 cells per ml of EC were spiked into the sample container, and resonance frequency change was monitored. The total resonance frequency change was 880 ± 5, 1,875 ± 8, and 1,417 ± 4 Hz for spinach, spring lettuce mix, and ground beef, respectively. A mixture of the three food matrices spiked with 100 cells per ml of EC gave a sensor response of 260 ± 15 Hz. The resonance frequency changes are approximately 40% lower than our previously reported study on ground beef. It is suggested that the reduction in sensitivity is due to differences in pathogen adherence to food matrices, which affects target binding to the sensor surface. We conclude that detection selectivity is conserved in the three food matrices examined and that the magnitude of sensor response is a function of the food matrix.


Author(s):  
В.В. Цыпленков ◽  
В.Н. Шастин

Analysis of acoustical phonon assisted relaxation rates of arsenic donor states has been carried out in depends on uniaxial compressive stress of crystal along [110] direction under low temperature (< 10 K). As shown, under optical excitation the inversion population of donor energy levels is formed that depends on deformation of crystal. This give grounds to suppose that stimulated emission on arsenic shallow donor intracenter transitions in THz range is possible under optical excitation. As shown, uniaxial stress along [110] direction can result to switch laser transition and stimulated emission frequency


2013 ◽  
Vol 737 ◽  
pp. 176-182 ◽  
Author(s):  
Ratno Nuryadi ◽  
Arko Djajadi ◽  
Reyhan Adiel ◽  
Lia Aprilia ◽  
Nuning Aisah

Microcantilever-based sensors have attracted interest in the last decade because of their small size, rapid detection and high sensitivity. This sensor can be applied in the many fields, i.e. physics, chemistry, biology, biochemistry, medical, and environment. In this paper, we describe microcantilever-based sensor for environmental monitoring, especially for a humidity detection. This sensor was operated in dynamic mode where a change in mass or spring constant of the microcantilever provides the resonance frequency change. Here, a change of humidity is detected by the resonance frequency and the amplitude changes. It is found that the increase in the humidity causes the decreasing the resonance frequency but increasing the amplitude. This result opens up the possibility of the humidity detection using microcantilever-based sensor.


2018 ◽  
Vol 23 (3) ◽  
pp. 152-164 ◽  
Author(s):  
Chun Liang ◽  
Lisa M. Houston ◽  
Ravi N. Samy ◽  
Lamiaa Mohamed Ibrahim Abedelrehim ◽  
Fawen Zhang

The purpose of this study was to examine neural substrates of frequency change detection in cochlear implant (CI) recipients using the acoustic change complex (ACC), a type of cortical auditory evoked potential elicited by acoustic changes in an ongoing stimulus. A psychoacoustic test and electroencephalographic recording were administered in 12 postlingually deafened adult CI users. The stimuli were pure tones containing different magnitudes of upward frequency changes. Results showed that the frequency change detection threshold (FCDT) was 3.79% in the CI users, with a large variability. The ACC N1’ latency was significantly correlated with the FCDT and the clinically collected speech perception score. The results suggested that the ACC evoked by frequency changes can serve as a useful objective tool in assessing frequency change detection capability and predicting speech perception performance in CI users.


1998 ◽  
Vol 103 (5) ◽  
pp. 2874-2874
Author(s):  
Cornelis J. Nederveen ◽  
Jean‐Pierre Dalmont

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 400 ◽  
Author(s):  
Alexandre Rêgo ◽  
Samridhi Chaturvedi ◽  
Amy Springer ◽  
Alexandra M. Lish ◽  
Caroline L. Barton ◽  
...  

Genes that affect adaptive traits have been identified, but our knowledge of the genetic basis of adaptation in a more general sense (across multiple traits) remains limited. We combined population-genomic analyses of evolve-and-resequence experiments, genome-wide association mapping of performance traits, and analyses of gene expression to fill this knowledge gap and shed light on the genomics of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus maculatus. Using population-genomic approaches, we detected modest parallelism in allele frequency change across replicate lines during adaptation to lentil. Mapping populations derived from each lentil-adapted line revealed a polygenic basis for two host-specific performance traits (weight and development time), which had low to modest heritabilities. We found less evidence of parallelism in genotype-phenotype associations across these lines than in allele frequency changes during the experiments. Differential gene expression caused by differences in recent evolutionary history exceeded that caused by immediate rearing host. Together, the three genomic datasets suggest that genes affecting traits other than weight and development time are likely to be the main causes of parallel evolution and that detoxification genes (especially cytochrome P450s and beta-glucosidase) could be especially important for colonization of lentil by C. maculatus.


1997 ◽  
Vol 69 (3) ◽  
pp. 227-232 ◽  
Author(s):  
L. OLLIVIER ◽  
L. A. MESSER ◽  
M. F. ROTHSCHILD ◽  
C. LEGAULT

Gene frequency changes following selection may reveal the existence of gene effects on the trait selected. Loci for the selected quantitative trait (SQTL) may thus be detected. Additionally, one can estimate the average effect (α) of a marker allele associated with an SQTL from the allele frequency change (Δq) due to selection of given intensity (i). In a sample of unrelated individuals, it is optimal to select the upper and lower 27% for generating Δq in order to estimate α. For a given number of individuals genotyped, this estimator is 0·25i2 times more efficient than the classical estimator of α, based on the regression of the trait on the genotype at the marker locus. The method is extended to selection criteria using information from relatives, showing that combined selection considerably increases the efficiency of estimation for traits of low heritability. The method has been applied to the detection of SQTL in a selection experiment in which the trait selected was pig litter size averaged over the first four parities, with i=3. Results for four genes are provided, one of which yielded a highly significant effect. The conditions required for valid application of the method are discussed, including selection experiments over several generations. Additional advantages of the method can be anticipated from determining gene frequencies on pooled samples of blood or DNA.


2005 ◽  
Author(s):  
J. Amirola ◽  
A. Rodriguez ◽  
L. Castaner ◽  
J. Lozano ◽  
F. J. Gutierrez ◽  
...  

1975 ◽  
Vol 53 (19) ◽  
pp. 2095-2122 ◽  
Author(s):  
J. E. Sipe ◽  
J. Van Kranendonk

The effects of spatial dispersion on the optical properties of dielectric crystals, arising from the broadening of the molecular energy levels into energy bands by the intermolecular interaction, are discussed both in the microscopic and the macroscopic theory. The microscopic equations of motion for the internal degrees of freedom describing the molecular excitations are derived using semiclassical radiation theory, and the conditions are given under which a description in terms of only the dipole moment is possible. The corresponding macroscopic equations are derived and the nature of the boundary conditions and integral relations appearing in the theory are discussed. The characterization of spatially dispersive media as nonlocal is shown to be based on a misinterpretation of the meaning of the integral kernels relating to infinite media. The breakdown of the macroscopic theory due to the previously predicted onset of an antiresonant response is explicitly demonstrated for slab geometries for which rigorous solutions are given of both the macroscopic and the microscopic equations. Finally, we introduce a mechanical coupling varying exponentially with the intermolecular separation, which provides a two parameter model for the exciton bands and which prevents the proliferation of microscopic refractive indices occurring in other models. The exp model is shown to be useful to study the dependence of the optical properties for example on the effective mass and the width of an exciton band.


Sign in / Sign up

Export Citation Format

Share Document