Mode II and mode III stress singularities and intensities at a crack tip terminating on a transversely isotropic-orthotropic bimaterial interface

In a recent paper (referred to as I) we obtained inter alia , the stress and displacement fields at the tips of a transverse crack in an isotropic medium sandwiched between orthotropic media under in-plane loading (mode II). The crack was lying wholly within the isotropic medium so that the singularity at the crack tip was of the usual inverse square root type. In this paper, the analysis is extended to the case when the tip of the crack terminates on the transversely isotropic-orthotropic bimaterial interface and the nature of the singularity at the crack tip depends on the elastic properties of both media. The analysis is performed for both inplane (mode II) and out-of-plane (mode III) shear loading. General solutions are obtained for the crack tip stress singularities and corresponding stress intensity factors, together with the influence of the elastic properties and geometry of the media upon the stress field. These solutions are specialized to the limiting case when the crack terminates on the interface between dissimilar isotropic media in order to demonstrate consistency with published results. As in I, the solutions are used to investigate the influence of ply angle θ upon the stress singularities in [± θ /90°] s fibre-reinforced composite laminates. For this analysis, the outer angle-ply sublaminates are treated macroscopically as homogeneous orthotropic media whose elastic constants are obtained using the classical lamination approximation. Calculations are also carried out to study the variation of stress intensity factors with the ply angle and outer sublaminate thickness.

2011 ◽  
Vol 214 ◽  
pp. 192-196 ◽  
Author(s):  
Al Emran Ismail ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Ruslizam Daud

This study presents a numerical investigation on the stress intensity factors (SIF), K of surface cracks in round bars that were obtained under pure torsion loadings or mode III. ANSYS finite element analysis (FEA) was used to determine the SIFs along the crack front of surface cracks embedded in the solid circular bars. 20-node isoparametric singular elements were used around the crack tip by shifting the mid-side node ¼-position close to a crack tip. Different crack aspect ratio, a/b were used ranging between 0.0 to 1.2 and relative crack depth, a/D were ranged between 0.1 to 0.6. Mode I SIF, KI obtained under bending moment was used to validate the proposed model and it was assumed this proposed model validated for analyzing mode III problems. It was found that, the mode II SIF, FII and mode III SIF, FIII were dependent on the crack geometries and the sites of crack growth were also dependent on a/b and a/D.


Author(s):  
Pei Gu ◽  
R. J. Asaro

For mixed-mode loading at a crack tip under small-scale yielding condition, mode I, mode II and mode III stress intensity factors control the crack propagation. This paper discusses three-dimensional mode separation to obtain the three stress intensity factors using the interaction integral approach. The 2D interaction integral approach to obtain mode I and mode II stress intensity factors is derived to 3D arbitrary crack configuration for mode I, mode II and mode III stress intensity factors. The method is implemented in a finite element code using domain integral method and numerical examples show good convergence for the domains around the crack tip. A complete solution for the three stress intensity factors is obtained for a bar with inclined crack face to the cross-section from numerical calculations. The solution for the bar is plotted into curves in terms of a set of non-dimensional parameters for practical engineering purpose. From the solution, mode mixity along the crack front and its implication to the direction of crack propagation is discussed.


Author(s):  
Simon C. F. Sheng

Stress intensity factors are found for a crack emanating from a circular hole in an elastic solid which is in a state of plane deformation resulting from loads applied at infinity or pressure applied internally at the faces of the crack and the hole. The results, including Mode-I (opening) and Mode-II (shearing) stress intensity factors, are obtained numerically by means of a dislocation model which conveniently allows for general loading and, consequently, can easily handle the case where a crack emanates non-radially from a hole. Good agreement is found with published values for the special case when the crack is radial and the loading consists of remote tension and uniform pressure at the surface of the hole. Also included in the present paper are results for the case when both the hole and the crack are pressurized. Although the subject elastic solid is an infinite medium, the results of this paper serve as good estimates when the hole is relatively small in a finite component and is distant from the component edge. Since in most circumstances a real crack does not orient itself radially from a hole, this paper provides analysts information to decide whether Mode-II fracture needs to be considered in assessing the structural integrity of a component with a hole. Similarly, when the problem is 3-dimensional, the results of this paper imply that Mode-III (tearing) fracture may also need to be considered.


2009 ◽  
Vol 417-418 ◽  
pp. 321-324 ◽  
Author(s):  
Jana Horníková ◽  
Pavel Šandera ◽  
Jaroslav Pokluda

A numerical analysis by means of the ANSYS code was performed in order to identify the ratio of both stress intensity factors and crack tip opening displacements for a cylindrical specimen with circumferential V-notch loaded by remote pure shear stress. This kind of loading produces pure mode II and III loading in four points on the circumferential crack front while the mix mode II+III exists in all other crack front points. In the linear-elastic range, the ratio of maximum values of mode III and mode II stress intensity factors was found to be . On the other hand, the ratio of crack tip opening displacements in the elastoplastic range approaches . These results can be used for the construction of fatigue crack growth rate curves in austenitic and ferritic steels measured in the near-threshold and near-fracture regions by means of a special testing device.


1990 ◽  
Vol 57 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Chien-Ching Ma

The dynamic stress intensity factors of an initially stationary semi-infinite crack in an unbounded linear elastic solid which kinks at some time tf after the arrival of a stress wave is obtained as a function of kinking crack tip velocity v, kinking angle δ, incident stress wave angle α, time t, and the delay time tf. A perturbation method, using the kinking angle δ as the perturbation parameter, is used. The method relies on solving simple problems which can be used with linear superposition to solve the problem of a kinked crack. The solutions can be compared with numerical results and other approximate results for the case of tf = 0 and give excellent agreement for a large range of kinking angles. The elastodynamic stress intensity factors of the kinking crack tip are used to compute the corresponding fluxes of energy into the propagating crack-tip, and these results are discussed in terms of an assumed fracture criterion.


Sign in / Sign up

Export Citation Format

Share Document