Integral properties of solutions to some boundary initial-value problems in linear anisotropic elastodynamics

We study some integral properties of weak solutions to some boundary initial-value problems in the linearized dynamical theory of elasticity. These problems arise during the indentation of an anisotropic half-space by a convex punch having an arbitrary indenting velocity and shape. In contrast to previous studies of the problem, we consider various boundary conditions, e. g., adhesive or frictional, in the case when this non-frictionless boundary initial-contact problem has two orthogonal planes of symmetry, which are both orthogonal to the boundary of half-space. We show that if the non-frictionless boundary initial-contact problem has such a symmetry, then the problem for integral characteristics of the solutions is equivalent to a problem of plane-wave propagation in the same medium. A proof is given that the instantaneous value of the force required to indent the punch during the first supersonic stage of contact is directly proportional to the product of the velocity of indentation and the area of contact at that instant, and is independent of the boundary conditions in the contact region.

2020 ◽  
Vol 26 (1) ◽  
pp. 80-89
Author(s):  
AN Soloviev ◽  
BV Sobol ◽  
EV Rashidova ◽  
AI Novikova

We analysed the problem of determining the exponents in the asymptotic solution of the isotropic theory of elasticity problem at the top of the wedge-shaped region where its sides (or one of them) are supported by a thin coating and lean without friction on the rigid bases. On the other side of the wedge-shaped region, it is assumed that there are various boundary conditions, including when there is a thin coating. Mathematically, the problem reduces to the problem of determining the roots of transcendental characteristic equations arising from the condition for the existence of a nontrivial solution of a system of the linear homogeneous equations. The characteristics of the stress tensor components have been determined for the various combinations of boundary conditions and physical and geometric parameters. The qualitative conclusions are made. In particular, we have established the combinations of the values of these parameters at which the singular behaviour of stresses arises.


1988 ◽  
Vol 55 (2) ◽  
pp. 430-436 ◽  
Author(s):  
Hui Li ◽  
J. P. Dempsey

The unbonded frictionless receding contact problem of a thin plate placed under centrally symmetric vertical loading while resting on an elastic half-space or a Winkler foundation is solved in this paper. The problem is transformed into the solution of two-coupled integral-series equations over an unknown contact region. The problem is nonlinear by virtue of unilateral contact and therefore needs to be solved iteratively. Special attention is given to the edge and corner contact pressure singularities for the plate on the elastic half-space. Comparison is made with other relevant numerical results available.


Sign in / Sign up

Export Citation Format

Share Document