scholarly journals Uniqueness of fast travelling fronts in reaction–diffusion equations with delay

Author(s):  
Maitere Aguerrea ◽  
Sergei Trofimchuk ◽  
Gabriel Valenzuela

We consider positive travelling fronts, u ( t ,  x )= ϕ ( ν . x + ct ), ϕ (−∞)=0, ϕ (∞)= κ , of the equation u t ( t ,  x )=Δ u ( t ,  x )− u ( t ,  x )+ g ( u ( t − h ,  x )), x ∈ m . This equation is assumed to have exactly two non-negative equilibria: u 1 ≡0 and u 2 ≡ κ >0, but the birth function g ∈ C 2 ( ,  ) may be non-monotone on [0, κ ]. We are therefore interested in the so-called monostable case of the time-delayed reaction–diffusion equation. Our main result shows that for every fixed and sufficiently large velocity c , the positive travelling front ϕ ( ν . x + ct ) is unique (modulo translations). Note that ϕ may be non-monotone. To prove uniqueness, we introduce a small parameter ϵ =1/ c and realize a Lyapunov–Schmidt reduction in a scale of Banach spaces.

2006 ◽  
Vol 136 (6) ◽  
pp. 1207-1237 ◽  
Author(s):  
Xinfu Chen ◽  
Jong-Shenq Guo ◽  
Hirokazu Ninomiya

This paper deals with entire solutions of a bistable reaction—diffusion equation for which the speed of the travelling wave connecting two constant stable equilibria is zero. Entire solutions which behave as two travelling fronts approaching, with super-slow speeds, from opposite directions and annihilating in a finite time are constructed by using a quasi-invariant manifold approach. Such solutions are shown to be unique up to space and time translations.


Author(s):  
Hyukjin Kwean

AbstractIn this paper we extend a theorem of Mallet-Paret and Sell for the existence of an inertial manifold for a scalar-valued reaction diffusion equation to new physical domains ωn ⊂ Rn, n = 2,3. For their result the Principle of Spatial Averaging (PSA), which certain domains may possess, plays a key role for the existence of an inertial manifold. Instead of the PSA, we define a weaker PSA and prove that the domains φn with appropriate boundary conditions for the Laplace operator, δ, satisfy a weaker PSA. This weaker PSA is enough to ensure the existence of an inertial manifold for a specific class of scalar-valued reaction diffusion equations on each domain ωn under suitable conditions.


Sign in / Sign up

Export Citation Format

Share Document