scholarly journals Solar System tests of Hořava–Lifshitz gravity

Author(s):  
Tiberiu Harko ◽  
Zoltan Kovács ◽  
Francisco S. N. Lobo

In the present paper, we consider the possibility of observationally constraining Hořava gravity at the scale of the Solar System, by considering the classical tests of general relativity (perihelion precession of the planet Mercury, deflection of light by the Sun and the radar echo delay) for the spherically symmetric black hole Kehagias–Sfetsos solution of Hořava–Lifshitz gravity. All these gravitational effects can be fully explained in the framework of the vacuum solution of Hořava gravity. Moreover, the study of the classical general relativistic tests also constrains the free parameter of the solution. From the analysis of the perihelion precession of the planet Mercury, we obtain for the free parameter ω of the Kehagias–Sfetsos solution the constraint ω ≥3.212×10 −26  cm −2 , the deflection of light by the Sun gives ω ≥4.589×10 −26  cm −2 , while the radar echo delay observations can be explained if the value of ω satisfies the constraint ω ≥9.179×10 −26  cm −2 .

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ya-Peng Hu ◽  
Hongsheng Zhang ◽  
Jun-Peng Hou ◽  
Liang-Zun Tang

The perihelion precession and deflection of light have been investigated in the 4-dimensional general spherically symmetric spacetime, and the master equation is obtained. As the application of this master equation, the Reissner-Nordstorm-AdS solution and Clifton-Barrow solution inf(R)gravity have been taken as examples. We find that both the electric charge andf(R)gravity can affect the perihelion precession and deflection of light, while the cosmological constant can only effect the perihelion precession. Moreover, we clarify a subtlety in the deflection of light in the solar system that the possible sun’s electric charge is usually used to interpret the gap between the experiment data and theoretical result. However, after also considering the effect from the sun’s same electric charge on the perihelion precession of Mercury, we can find that it is not the truth.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
P. A. González ◽  
Marco Olivares ◽  
Eleftherios Papantonopoulos ◽  
Yerko Vásquez

AbstractWe study the motion of particles in the background of a scalar–tensor theory of gravity in which the scalar field is kinetically coupled to the Einstein tensor. We constrain the value of the derivative parameter z through solar system tests. By considering the perihelion precession we obtain the constraint $$\sqrt{z}/m_{\mathrm{p}} > 2.6\times 10^{12}$$ z / m p > 2.6 × 10 12  m, the gravitational redshift $$\frac{\sqrt{z}}{m_{\mathrm{p}}}>2.7\times 10^{\,10}$$ z m p > 2.7 × 10 10  m, the deflection of light $$\sqrt{z}/m_{\mathrm{p}} > 1.6 \times 10^{11}$$ z / m p > 1.6 × 10 11  m, and the gravitational time delay $$\sqrt{z}/m_{\mathrm{p}} > 7.9 \times 10^{12}$$ z / m p > 7.9 × 10 12  m; thereby, our results show that it is possible to constrain the value of the z parameter in agreement with the observational tests that have been considered.


2021 ◽  
Author(s):  
Jian’an Wang

Abstract According to the revised gravitation formula, the gravitational force on planets in the solar system is mainly provided by the sun, and only when the planet is far enough from the sun to treat the sun as a particle, the gravitational force on the planet coincides well with Newton's gravitational formula. The closer the planet is to the sun, the more the gravitational force on the planet deviates from (greater than) the value calculated by Newton's universal gravitation formula. The precession of the planet's perihelion is due to this property of gravity.


2018 ◽  
Vol 14 (3) ◽  
pp. 5765-5795
Author(s):  
Eduardo S. Guimaraes

This article is a logical and rational analysis of the physical phenomena produced by the three fields that are generated in space: gravity field; field of terrestrial nuclear magnetism; and orbital field. Eduardo Guimarães, through the studies of the three nuclear masses of the Sun's nucleus, the three nuclear masses of the moon's nucleus, and the three nuclear masses of the Earth's nucleus. We discover the three spatial fields that are generated in the solar system and in the planets. Then, from the general theory of the three fields of space, we can understand all the mechanics that generate the dynamics and kinematics of celestial bodies. So now we can understand why the smaller celestial bodies orbit the orbital field of the largest celestial bodies. So now we can understand why the planets produce orbits of elliptical motions, around the orbital field of the Sun. Then we understand the orbital mechanics of the little planet Mercury, and its abnormal orbit around the orbiting field of the Sun. Then Mercury has a perihelion precession of 2 degrees per century, due to an approximation of the perihelion of Mercury which is attracted by the micro-gravity of the Sun, generating an orbital deviation of 2 degrees per century. In the future the planet Mercury will lose energy from its nucleus and will not be able to make the orbital curve of the perihelion because it will have been attracted by the gravitational field of the Sun's nucleus. The fall of Mercury on the Sun will generate two thermonuclear explosions of SUPERNOVA. The first thermonuclear explosion of SUPERNOVA will be generated by the thermonuclear collision of the gravity mass attraction of Mercury debris with the Sun's nucleus. The second thermonuclear explosion of SUPERNOVA will be generated by the thermonuclear collision of attraction of the mass of orbital attraction of Mercury debris with the nucleus of the Sun. These two thermonuclear explosions of SUPERNOVA will generate two immense thermonuclear shockwaves that will devastate the entire fragile geo-biome of the solar system.  


Sign in / Sign up

Export Citation Format

Share Document