gravitational deflection of light
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 3)

Particles ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 536-576
Author(s):  
Spyridon Vossos ◽  
Elias Vossos ◽  
Christos G. Massouros

This paper shows that gravitational results of general relativity (GR) can be reached by using special relativity (SR) via a SR Lagrangian that derives from the corresponding GR time dilation and vice versa. It also presents a new SR gravitational central scalar generalized potential V=V(r,r.,ϕ.), where r is the distance from the center of gravity and r.,ϕ. are the radial and angular velocity, respectively. This is associated with the Schwarzschild GR time dilation from where a SR scalar generalized potential is obtained, which is exactly equivalent to the Schwarzschild metric. Thus, the Precession of Mercury’s Perihelion, the Gravitational Deflection of Light, the Shapiro time delay, the Gravitational Red Shift, etc., are explained with the use of SR only. The techniques used in this paper can be applied to any GR spacetime metric, Teleparallel Gravity, etc., in order to obtain the corresponding SR gravitational scalar generalized potential and vice versa. Thus, the case study of Newtonian Gravitational Potential according to SR leads to the corresponding non-Riemannian metric of GR. Finally, it is shown that the mainstream consideration of the Gravitational Red Shift contains two approximations, which are valid in weak gravitational fields only.


Author(s):  
Zhen Zhang

Abstract The mysterious dark energy remains one of the greatest puzzles of modern science. Current detections for it are mostly indirect. The spacetime effects of dark energy can be locally described by the SdS$_w$ metric. Understanding these local effects exactly is an essential step towards the direct probe of dark energy. From first principles, we prove that dark energy can exert a repulsive dark force on astrophysical scales, different from the Newtonian attraction of both visible and dark matter. One way of measuring local effects of dark energy is through the gravitational deflection of light. We geometrize the bending of light in any curved static spacetime. First of all, we define a generalized deflection angle, referred to as the Gaussian deflection angle, in a mathematically strict and conceptually clean way. Basing on the Gauss-Bonnet theorem, we then prove that the Gaussian deflection angle is equivalent to the surface integral of the Gaussian curvature over a chosen lensing patch. As an application of the geometrization, we study the problem of whether dark energy affects the bending of light and provide a strict solution to this problem in the SdS$_w$ spacetime. According to this solution, we propose a method to overcome the difficulty of measuring local dark energy effects. Exactly speaking, we find the lensing effect of dark energy can be enhanced by 14 orders of magnitude when properly choosing the lensing patch in certain cases. It means that we can probe the existence and nature of dark energy directly in our solar system. This points to an exciting direction to help unraveling the great mystery of dark energy.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 44
Author(s):  
Kimet Jusufi

In this letter, we use a recent wormhole metric known as a ringhole [Gonzalez-Diaz, Phys. Rev. D 54, 6122, 1996] to determine the surface topology and the deflection angle of light in the weak limit approximation using the Gauss-Bonnet theorem (GBT). We apply the GBT and show that the surface topology at the wormhole throat is indeed a torus by computing the Euler characteristic number. As a special case of the ringhole solution, one can find the Ellis wormhole which has the surface topology of a 2-sphere at the wormhole throat. The most interesting results of this paper concerns the problem of gravitational deflection of light in the spacetime of a ringhole geometry by applying the GBT to the optical ringhole geometry. It is shown that, the deflection angle of light depends entirely on the geometric structure of the ringhole geometry encoded by the parameters b0 and a, being the ringhole throat radius and the radius of the circumference generated by the circular axis of the torus, respectively. As special cases of our general result, the deflection angle by Ellis wormhole is obtained. Finally, we work out the problem of deflection of relativistic massive particles and show that the deflection angle remains unaltered by the speed of the particles.


Universe ◽  
2019 ◽  
Vol 5 (11) ◽  
pp. 218 ◽  
Author(s):  
Toshiaki Ono ◽  
Hideki Asada

In order to clarify the effects of the finite distance from a lens object to a light source and a receiver, the gravitational deflection of light has been recently reexamined by using the Gauss–Bonnet (GB) theorem in differential geometry (Ishihara et al. 2016). The purpose of the present paper is to give a short review of a series of works initiated by the above paper. First, we provide the definition of the gravitational deflection angle of light for the finite-distance source and receiver in a static, spherically symmetric and asymptotically flat spacetime. We discuss the geometrical invariance of the definition by using the GB theorem. The present definition is used to discuss finite-distance effects on the light deflection in Schwarzschild spacetime for both the cases of weak deflection and strong deflection. Next, we extend the definition to stationary and axisymmetric spacetimes. We compute finite-distance effects on the deflection angle of light for Kerr black holes and rotating Teo wormholes. Our results are consistent with the previous works if we take the infinite-distance limit. We briefly mention also the finite-distance effects on the light deflection by Sagittarius A * .


Sign in / Sign up

Export Citation Format

Share Document