scholarly journals Nonlinear analysis of an actuated seafloor-mounted carpet for a high-performance wave energy extraction

Author(s):  
Mohammad-Reza Alam

It is known that muddy seafloors can extract significant energy from overpassing surface waves via engaging them in strong interaction processes. If a synthetic seabed can respond to the action of surface gravity waves similar to the mud response, then it too can take out a lot of energy from surface waves. Analysis of the performance of a mud-resembling seabed carpet in harvesting ocean wave energy is the subject of this article. Specifically, and on the basis of the field measurements and observations of properties/responses of seafloor mud, we focus our attention on an artificial viscoelastic seabed carpet composed of (vertically acting) linear springs and generators. We show that the system of sea/synthetic-carpet admits two propagating wave solutions: the surface mode and the bottom mode. The damping of a surface-mode wave is proportional to its wavelength and hence is classic. However, the damping of a bottom-mode wave is larger for shorter waves, and is in general stronger than that of the surface-mode wave. To address the effect of (high-order) nonlinear interactions as well as to investigate the performance of our proposed carpet of wave energy conversion (CWEC) against a spectrum of waves, we formulate a direct simulation scheme based on a high-order spectral method. We show, by taking high-order nonlinear interactions into account, that the CWEC efficiency can be significantly higher for steeper waves. We further show that the bandwidth of high performance of the CWEC is broad, it yields minimal wave reflections and its theoretical efficiency asymptotically approaches unity within a finite and (relatively) short extent of deployment.

Author(s):  
Mohammad-Reza Alam

Similar to the mechanism by which a visco-elastic mud damps the energy of overpassing surface waves, if the near-shore seafloor is carpeted by an elastic thin material attached to generators (i.e. dampers) a high fraction of surface wave energy can be absorbed. Here we present analytical modeling of the flexible carpet wave energy converter and show that a high efficiency is achievable. Expressions for optimal damping and stiffness coefficients are derived and different modes of oscillations are discussed. The presented wave energy conversion scheme is completely under the water surface hence imposes minimal danger to boats and the sea life (i.e. no mammal entanglement). The carpet is survivable against high momentum of storm surges and in fact can perform well under very energetic (e.g. stormy) sea conditions, when most existing wave energy devices are needed to shelter themselves by going into an idle mode. I am honored to be a colleague of Prof. Ronald Yeung at the University of California, Berkeley. He is a world renowned scientist of ship hydrodynamics with several valuable and key contributions to the field. This manuscript on a new ocean wave energy extraction scheme is due to Ron’s recent interest in the field of ocean renewable energy. I am looking forward to years of working closely with him. Thank you Ron.


2014 ◽  
Vol 70 (2) ◽  
pp. I_1306-I_1310
Author(s):  
Takehis SAITOH ◽  
Junpei WAGATSUM ◽  
Toshiyuki UENO ◽  
Shot KITA

Author(s):  
Douglas A. Gemme ◽  
Steven P. Bastien ◽  
Raymond B. Sepe ◽  
John Montgomery ◽  
Stephan T. Grilli ◽  
...  

2011 ◽  
Vol 33 (2) ◽  
pp. 110-119 ◽  
Author(s):  
S.G. Siegel ◽  
T. Jeans ◽  
T.E. McLaughlin

Author(s):  
Weixing Chen ◽  
Feng Gao

Energy resources of offshore wind and ocean wave are clean, renewable and abundant. Various technologies have been developed to utilize the two kinds of energy separately. This paper presents the principle of an integrated generation unit for offshore wind power and ocean wave energy. The principle of the unit includes that: The wind rotor with retractable blades and the 3-DOF (degrees of freedom) mechanism with the hemispherical oscillating body are used to collect the irregular wind and wave power, respectively; The energy conversion devices (ECDs) are utilized to convert mechanical energy from both the wind rotor and the 3-DOF mechanism into hydraulic energy; The hydraulic energy is used to drive the hydraulic motors and electrical generators to produce electricity. Some analyses and experiments of the unit is conducted.


2021 ◽  
Author(s):  
Stephanie Jane Duce ◽  
Ana Vila-Concejo ◽  
Robert Jak McCarroll ◽  
Bevan Yiu ◽  
Lachlan A Perris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document