high fraction
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 123)

H-INDEX

32
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 336
Author(s):  
Marawan Abdelwahed ◽  
Riccardo Casati ◽  
Anna Larsson ◽  
Stefano Petrella ◽  
Sven Bengtsson ◽  
...  

The microstructure and mechanical properties of a 4130-grade steel processed by L-PBF using a feedstock of low-cost water atomized powder have been investigated considering the effects of powder recycling. Chemical analysis of the recycled powder showed a constant amount of alloying elements with a slight reduction in oxygen content. The as-built microstructure was mainly composed of a martensitic structure separated by a high fraction of low-angle grain boundaries, suggesting the application of a direct tempering treatment starting from the as-built condition as a cost-effective post-process thermal treatment rather than the conventional quench and tempering treatment. Moreover, the degree of anisotropy generated by L-PBF in as-built specimens could be reduced after performing either the direct tempering or the quench and tempering treatments. The possible degradation of powder properties on the steel performance was also investigated. After various powder recycling events, no significant deterioration in tensile properties was measured, indicating that the water atomized powder could be a sustainable feedstock candidate for L-PBF.


2021 ◽  
Author(s):  
Ron Berman ◽  
Christophe Van den Bulte

We investigate what fraction of all significant results in website A/B testing is actually null effects (i.e., the false discovery rate (FDR)). Our data consist of 4,964 effects from 2,766 experiments conducted on a commercial A/B testing platform. Using three different methods, we find that the FDR ranges between 28% and 37% for tests conducted at 10% significance and between 18% and 25% for tests at 5% significance (two sided). These high FDRs stem mostly from the high fraction of true null effects, about 70%, rather than from low power. Using our estimates, we also assess the potential of various A/B test designs to reduce the FDR. The two main implications are that decision makers should expect one in five interventions achieving significance at 5% confidence to be ineffective when deployed in the field and that analysts should consider using two-stage designs with multiple variations rather than basic A/B tests. This paper was accepted by Eric Anderson, marketing.


2021 ◽  
Vol 119 (2) ◽  
pp. e2112532119
Author(s):  
Peter I. Frazier ◽  
J. Massey Cashore ◽  
Ning Duan ◽  
Shane G. Henderson ◽  
Alyf Janmohamed ◽  
...  

We consider epidemiological modeling for the design of COVID-19 interventions in university populations, which have seen significant outbreaks during the pandemic. A central challenge is sensitivity of predictions to input parameters coupled with uncertainty about these parameters. Nearly 2 y into the pandemic, parameter uncertainty remains because of changes in vaccination efficacy, viral variants, and mask mandates, and because universities’ unique characteristics hinder translation from the general population: a high fraction of young people, who have higher rates of asymptomatic infection and social contact, as well as an enhanced ability to implement behavioral and testing interventions. We describe an epidemiological model that formed the basis for Cornell University’s decision to reopen for in-person instruction in fall 2020 and supported the design of an asymptomatic screening program instituted concurrently to prevent viral spread. We demonstrate how the structure of these decisions allowed risk to be minimized despite parameter uncertainty leading to an inability to make accurate point estimates and how this generalizes to other university settings. We find that once-per-week asymptomatic screening of vaccinated undergraduate students provides substantial value against the Delta variant, even if all students are vaccinated, and that more targeted testing of the most social vaccinated students provides further value.


2021 ◽  
Author(s):  
Eleanor Landwehr ◽  
Meghan Baker ◽  
Takuya Oguma ◽  
Hannah Burdge ◽  
Takahiro Kawajiri ◽  
...  

Class III neuroactive metabolites from the bark of Galbu-limima belgraveana occur in variable distribution and are not easily procured by chemical synthesis. Here we decrease the synthetic burden of himgaline to nearly one-third of the prior best (7–9 vs. 19–31 steps) by cross-coupling high fraction aromatic (FAr) building blocks followed by com-plete, stereoselective reduction to high-fraction sp3 (Fsp3) products. This short entry into GB alkaloid space allows its extensive exploration and biological interrogation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259685
Author(s):  
Pim van Hooft ◽  
Wayne M. Getz ◽  
Barend J. Greyling ◽  
Bas Zwaan ◽  
Armanda D. S. Bastos

A high genetic load can negatively affect population viability and increase susceptibility to diseases and other environmental stressors. Prior microsatellite studies of two African buffalo (Syncerus caffer) populations in South Africa indicated substantial genome-wide genetic load due to high-frequency occurrence of deleterious alleles. The occurrence of these alleles, which negatively affect male body condition and bovine tuberculosis resistance, throughout most of the buffalo’s range were evaluated in this study. Using available microsatellite data (2–17 microsatellite loci) for 1676 animals from 34 localities (from 25°S to 5°N), we uncovered continent-wide frequency clines of microsatellite alleles associated with the aforementioned male traits. Frequencies decreased over a south-to-north latitude range (average per-locus Pearson r = -0.22). The frequency clines coincided with a multilocus-heterozygosity cline (adjusted R2 = 0.84), showing up to a 16% decrease in southern Africa compared to East Africa. Furthermore, continent-wide linkage disequilibrium (LD) at five linked locus pairs was detected, characterized by a high fraction of positive interlocus associations (0.66, 95% CI: 0.53, 0.77) between male-deleterious-trait-associated alleles. Our findings suggest continent-wide and genome-wide selection of male-deleterious alleles driven by an earlier observed sex-chromosomal meiotic drive system, resulting in frequency clines, reduced heterozygosity due to hitchhiking effects and extensive LD due to male-deleterious alleles co-occurring in haplotypes. The selection pressures involved must be high to prevent destruction of allele-frequency clines and haplotypes by LD decay. Since most buffalo populations are stable, these results indicate that natural mammal populations, depending on their genetic background, can withstand a high genetic load.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1971
Author(s):  
Jiamei Wang ◽  
Xinjie Di ◽  
Chengning Li ◽  
Dongpo Wang

The multi-pass deposited metals were prepared by metal-cored wire with low (2.5 wt%) and high (4.0 wt%) Ni to research the effect of Ni on the bainite/martensite transformation. Results showed that deposited metals exhibited a multiphase structure comprised of bainite, martensite and residual austenite, which is not only explained from SEM/TEM, but also identified and quantified each phase from crystallographic structure through XRD and EBSD. With Ni content increasing, the fraction of martensite increases from 37% to 41%, and that of bainite decreases from 61% to 55% accordingly because 4% Ni element narrows the temperature range of the bainite transformation ~20 °C. The 7.8% residual austenite exhibited block and sheet in the deposited metal with low Ni, while the fraction of residual austenite was 3.26% as a film with high Ni, caused by different transformation mechanisms of bainite and martensite. The tensile strengths of deposited metals were 1042 ± 10 MPa (2.5% Ni) and 1040 ± 5 MPa (4% Ni), respectively. The yield strength of deposited metals with high Ni was 685 ± 18 MPa, which was higher than low Ni due to the high fraction of martensite. The impact values of deposited metals with high Ni content decreased because the volume fraction of bainite and residual austenite and area fraction of large-angle grain boundary were lower.


2021 ◽  
Author(s):  
Vaughn Shirey ◽  
Rassim Khelifa ◽  
Leithen K. M’Gonigle ◽  
Laura Melissa Guzman

AbstractHistorical museum records provide potentially useful data for identifying drivers of change in species occupancy. However, because museum records are typically obtained via many collection methods, methodological developments are needed in order to enable robust inferences. Occupancy-detection models, a relatively new and powerful suite of methods, are a potentially promising avenue because they can account for changes in collection effort through space and time. Here we present a methodological road-map for using occupancy models to analyze historical museum records. We use simulated data-sets to identify how and when patterns in data and/or modelling decisions can bias inference. We focus primarily on the consequences of contrasting methodological approaches for dealing with species’ ranges and inferring species’ non-detections in both space and time. We find that not all data-sets are suitable for occupancy-detection analysis but, under the right conditions (namely, data-sets that span long durations and contain a high fraction of community-wide collections, or collection events that focus on communities of organisms), models can accurately estimate trends. Finally, we present a case-study on eastern North American odonates where we calculate long-term trends of occupancy by using our most robust workflow.


2021 ◽  
Author(s):  
Mathieu Claireaux ◽  
Tom G Caniels ◽  
Marlon de Gast ◽  
Julianna Han ◽  
Denise Guerra ◽  
...  

AbstractDelineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigated the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We found that ∼82% of SARS-CoV-2 S-reactive B cells show a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells shared an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. A proportion of memory B cells, comprising switched (∼0.05%) and unswitched B cells (∼0.04%), was also reactive with S and some of these cells were reactive with ADAMTS13, which is associated with thrombotic thrombocytopenia. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Wang ◽  
Tsung-Tse Lin ◽  
Mingxi Chen ◽  
Ke Wang ◽  
Hideki Hirayama

AbstractThe key challenge for terahertz quantum cascade lasers (THz-QCLs) is to make it operating at room-temperature. The suppression of thermally activated leakages via high lying quantum levels is emphasized recently. In this study, we employ the advanced self-consistent method of non-equilibrium Green’s function, aiming to reveal those kinds of leakages in the commonly used THz-QCL designs based on 2-, 3- and 4-quantum well. At the high temperature of 300 K, if all the confined high lying quantum levels and also the continuums are included within three neighboring periods, leakages indeed possess high fraction of the total current (21%, 30%, 50% for 2-, 3- and 4-quantum well designs, respectively). Ministep concept is introduced to weaken those leakage channels by isolating the desired levels from high lying ones, thus the leakages are well suppressed, with corresponding fractions less than 5% for all three designs.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 455
Author(s):  
Fan Zhang

In this work, we expand on a comment by Lyne et al. (2017), that intermittent pulsars tend to congregate near a stripe in the logarithmic period versus period-derivative diagram. Such a stripe represents a small range of polar cap electric potential. Taking into account also the fact (already apparent in their Figure 7, but not explicitly stated there) that high-fraction nulling pulsars also tend to reside within this and an additional stripe, we make the observation that the two stripes further match the “death lines” for double- and single-pole interpulses, associated with nearly orthogonal and aligned rotators, respectively. These extreme inclinations are known to suffer from pair production deficiencies, so we propose to explain intermittency and high-fraction nulling by reinvigorating some older quiescent (no pulsar wind or radio emission) “electrosphere” solutions. Specifically, as the polar potential drops below the two threshold bands (i.e., the two stripes), corresponding to the aligned and orthogonal rotators, their respective magnetospheres transition from being of the active pair-production-sustained-type into becoming the electrospheres, in which charges are only lifted from the star. The borderline cases sitting in the gap outside of the stable regime of either case manifest as high-fraction nullers. Hall evolution of the magnetic field inside orthogonally rotating neutron stars can furthermore drive secular regime changes, resulting in intermittent pulsars.


Sign in / Sign up

Export Citation Format

Share Document