The excitation functions of Ba (p, X) M Xe (M — 124-136) in the energy range 38-600 MeV; the use of ‘cosmogenic’ xenon for estimating ‘burial’ depths and ‘real’ exposure ages

Thin target experiments were performed to obtain the excitation functions of the reactions Ba (p, X) MX.e. The abundances of all stable Xe isotopes and of the radionuclides 127Xe and 131Ba were determined by means of rare gas mass spectroscopy and y -counting, respectively. The excitation functions show marked characteristics leading to strong variations in the proton-induced Xe-ratios as functions of energy. The 131Xe/126Xe ratio - the special lunar anomaly-was found to vary from 1.14 ±0.4 (600 MeV) to 248.8 ± 4.0 (75 MeV). The Reproduction rates and the MXe/126Xe ratios as functions of depths were estimated for 271 geometry utilizing the depth dependent galactic-cosmic-ray (g.c.r.) fluxes of Reedy & Arnold (1972). Substantial isotopic variations for all of the proton-induced Xe ratios were found, sufficient to explain most of the cosmogenic Xe ratios (exceptions are 130Xe, and 132Xe) measured yet in lunar samples with proton-induced reactions on Ba at different depths in the Moon. Actual lunar samples are used to check the validity of the results.

1972 ◽  
Vol 36 (3) ◽  
pp. 269-301 ◽  
Author(s):  
J.C Huneke ◽  
F.A Podosek ◽  
D.S Burnett ◽  
G.J Wasserburg

2018 ◽  
Vol 116 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Fatemeh Sedaghatpour ◽  
Stein B. Jacobsen

We report high-precision Mg isotopic analyses of different types of lunar samples including two pristine Mg-suite rocks (72415 and 76535), basalts, anorthosites, breccias, mineral separates, and lunar meteorites. The Mg isotopic composition of the dunite 72415 (δ25Mg = −0.140 ± 0.010‰, δ26Mg = −0.291 ± 0.018‰), the most Mg-rich and possibly the oldest lunar sample, may provide the best estimate of the Mg isotopic composition of the bulk silicate Moon (BSM). This δ26Mg value of the Moon is similar to those of the Earth and chondrites and reflects both the relative homogeneity of Mg isotopes in the solar system and the lack of Mg isotope fractionation by the Moon-forming giant impact. In contrast to the behavior of Mg isotopes in terrestrial basalts and mantle rocks, Mg isotopic data on lunar samples show isotopic variations among the basalts and pristine anorthositic rocks reflecting isotopic fractionation during the early lunar magma ocean (LMO) differentiation. Calculated evolutions of δ26Mg values during the LMO differentiation are consistent with the observed δ26Mg variations in lunar samples, implying that Mg isotope variations in lunar basalts are consistent with their origin by remelting of distinct LMO cumulates.


1962 ◽  
Vol 17 (5) ◽  
pp. 422-432 ◽  
Author(s):  
H. Voshage

The use of iron meteorites for the establishment of possible long-time variations (108 —109 years) of the cosmic ray intensity in interplanetary space is based upon the study of the production rates of nuclides which are formed by the interaction of cosmic ray particles with nuclei in meteorites. Mass spectrometric measurements of the isotopic composition of meteoritic potassium * are combined with data on cosmogenic rare gases and other elements to give K41-K40-exposure ages and rare gas production rates. The K41-K40-exposure ages are larger than the exposure ages obtained from the study of short-lived activities (e. g. Cl36, A39), by a factor 1.3 to 1.8. This result indicates that the cosmic ray intensity increased during the bombardment history of the meteorites. The data, for example, are consistent with the following assumptions: 1) The cosmic ray intensity was constant during most of the bombarding time and increased by a factor of about 1.5 only a few million years ago. 2) The intensity rose as I(t) =I0 e— γt with —1.1·10-9 ≦ γ ≦ —0.6 · 10-9 a–1. The consequences of this result for the interpretation of meteorite data are discussed.


1966 ◽  
Vol 21 (1-2) ◽  
pp. 93-110 ◽  
Author(s):  
H. Wänke

Knowing the cosmic ray exposure ages of a sufficiently large number of meteorites and using the earth as analyser with special assumptions, criteria can be found to distinguish between a lunar or asteroidal origin of meteorites. Several of the following arguments are based on new and unpublished results of rare gas measurements by HINTENBERGER, SCHULTZ und WÄNKE70.Bronzite-chondrites :1. Arguments for an origin near the surface of the parent body. a) Porosity of the chondrites 0—20%. b) Many bronzite-chondrites contain light primordial rare gases, originating from the exposure of the single meteorite grains to the solar wind. c) Primordial rare gas content always connected with light-dark structure. d) In the distribution of the cosmic ray exposure ages certain groupings can be distinguished. The age distribution of bronzite-chondrites with light primordial rare gases is identical with the distribution of the cosmic ray exposure ages of all bronzite-chondri-tes. The bronzite-chondrites containing primordial gas therefore are probably coming from the very upper layers, and the other bronzite-chondrites from somewhat deeper layers of their parent body.2. Arguments for an origin close to the earth’s orbit. a) Bronzite-chondrites with high cosmic ray exposure ages show a slight tendency to fall in the afternoon (noon until midnight) . b) For the bronzite-chondrites, which are morning falls (midnight until noon), diffusion losses of 3He and 4He are higher and more frequent compared to the afternoon falls. The reason for this can be found in a closer approach to the sun of the first ones. Hypersthene-chondrites do not show this effect. c) Bronzite-chondrites with light primordial rare gas content concentrate among the afternoon falls. d) The mean cosmic ray exposure age of the bronzite-chondrites is considerably lower than that of the hypersthene-chondrites.3. Arguments concerning the size of the parent body. Light primordial rare gas and their connection with light-dark structure indicate a parent body of the size of the moon or a large asteroid.None of these arguments are strictly conclusive. In some cases they are based on observations, which can only be obtained by using statistical methods. Most of these effects are close to the mean error. Adding, however, all observations together, a lunar origin of the bronzite-chondrites becomes nearly undoubtable. A lunar origin of stone meteorites was in recent times first proposed by URET 3.Hypersthene-chondrites :Hypersthene-chondrites with low cosmic ray exposure ages are rare among the morning falls. Their parent body therefore probably has to be found outside the earth’s orbit. Their distribution of the cosmic ray exposure ages may also lead to this conclusion. As proposed by ANDERS 4, the Mars asteroids could possibly be the parent bodies for the hypersthene-chondrites. Mars itself might however be considered also. A lunar origin of the hypersthene-chondrites seems to be completely out of question.


1965 ◽  
Vol 20 (8) ◽  
pp. 983-989 ◽  
Author(s):  
H. Hintenberger ◽  
H. König ◽  
L. Schultz ◽  
H. Wanke

The total content as well as the isotopic composition of helium and neon of 36 stone meteorites have been determined. Except for meteorites with primordial rare gas content, the radiogenic component of 4He has been calculated by subtracting the fourfold amount of 3He from the total 4He in order to allow for the spallation fraction of 4He. From the content of radiogenic 4He the U-Th-He-ages of the investigated meteorites have been calculated.From the content of 3He and 21Ne cosmic ray exposure ages were calculated for all meteorites also.With the new data of the 36 stone meteorites, presented in this paper, the total number of stone meteorites, of which rare gas measurements were carried out so far, amounts to 70 bronzitechondrites and 93 hypersthene-chondrites. The earlier indications for marked differences in the distribution of the U-Th-He-ages as well as for the cosmic ray exposure ages between the bronzitechondrites and the hypersthene-chondrites proved to be undoubtedly correct.During our investigations, we found Elm Creek as one additional bronzite-diondrite with high amounts of primordial rare gases. In two other bronzite-chondrites (Cavour and Dimmit) primordial rare gases were also detected, but in rather small amounts.


1996 ◽  
Vol 172 ◽  
pp. 229-232
Author(s):  
B.J. Gladman ◽  
J.A. Burns ◽  
H. Levison ◽  
M.J. Duncan

As meteorites from the Moon and Mars continue to be discovered, it is increasingly clear that impact fragments can escape from large bodies more easily than previously believed. These escaping fragments are then subject to the gravitational perturbations of the planets, allowing them to be transferred to a body other than their parent. The lunar meteorites and SNC meteorites prove the plausibility of this process. Warren (1994) summarizes cosmic ray exposure ages and other properties of the lunar and martian meteorites. Their existence confirms that lightly shocked material can be launched at greater than the escape speed of the Moon and Mars.


The etching techniques for the identification of very heavy cosmic ray ions from their etchable tracks in mineral track detectors are described and the results so far obtained for the ancient galactic cosmic ray Cr group (V + Cr + Mn) to Fe abundance ratio are presented. It was found that the etchable radiation damage of fossil cosmic ray tracks has probably only been slightly affected by annealing processes. The track data obtained on pyroxenes of different lunar rocks and on pyroxenes and feldspars, i.e. detectors of different track retaining characteristics, yielded consistent results. From this measurements, an ancient Cr group to Fe ratio of approximately 0.7- 0.8 was deduced. In comparison with the present day galactic cosmic ray composition, this ratio is enhanced by a factor of about two. From the track data obtained in different lunar soil samples it was concluded that a variation in the Gr group to Fe ratio between 0.4- 0.8 exists. Both results indicate, that either a long term change in the cosmic ray composition has taken place or the interpretation of track data is much more complicated than assumed.


1964 ◽  
Vol 19 (3) ◽  
pp. 327-341 ◽  
Author(s):  
H. Hintenberger ◽  
H. König ◽  
L. Schultz ◽  
H. Wanke

The total content as well as the isotopic composition of helium and neon of 47 stone meteorites have been determined. The concentrations of 3He, 4He, 20Ne, 21Ne and 22Ne are included in the tables. For meteorite samples without primordial rare gas content, the radiogenic component of 4He has been calculated by subtracting the fourfold amount of 3He from the total 4He in order to allow for the spallation fraction of 4He. From radiogenic 4He the U-Th-He ages of the investigated meteorites have been calculated using an average uranium content of 1.1·10-8 g/g (except those cases were uranium determinations existed) and the 3.5 fold amount for thorium.The cosmic ray exposure ages were calculated using the average production rates for 3He and 21Ne derived from the decay rate of tritium and 22Na measured in some meteorites. The calculated values for the exposure ages lie between 0.5·106 years and 40· 106 years.Some of the meteorites show very low 3He/21Ne ratios which indicate diffusion loss of the spallogenic rare gases.Our results indicate differences in the distribution of the U-Th-He ages as well as of the cosmic ray exposure ages between the chondrites of the low iron group (L) and the chondrites of the high iron group (H). On the average the U-Th-He ages of the H group chondrites are considerably higher than those of the L group. In fact, there are only a few H group chondrites with low U-Th-He ages, and for most of these exceptions we show that they lost their radiogenic 4He during the time of cosmic ray exposure. The cosmic ray exposure ages of the H group chondrites are below 10 million years in 74% of the cases, while for those of the L group only 40% are below this value.Investigations on the 47 meteorites also disclosed two additional meteorites (Pultusk and Vigarano) which exhibit a high content of light primordial rare gases, as was earlier found by us for Pantar, Breitscheid and Tabor.


Sign in / Sign up

Export Citation Format

Share Document