escape speed
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Jesse W Young ◽  
Adam D Foster ◽  
Gabrielle A Russo ◽  
Gregory A Smith ◽  
Michael T Butcher

Abstract For many animals, the juvenile stage of life can be particularly perilous. Once independent, immature animals must often complete the same basic survival functions as adults despite smaller body size and other growth-related limits on performance. Because, by definition, juveniles have yet to reproduce, we should expect strong selection for mechanisms to offset these ontogenetic limitations, allowing individuals to reach reproductive adulthood and maintain Darwinian fitness. We use an integrated ontogenetic dataset on morphology, locomotor performance, and longevity in wild cottontail rabbits (Sylvilagus floridanus, Allen 1848) to test the hypothesis that prey animals are under selective pressure to maximize juvenile performance. We predicted that 1) juveniles would accelerate more quickly than adults, allowing them to reach adult-like escape speeds, and 2) juveniles with greater levels of performance should survive for longer durations in the wild, thus increasing their reproductive potential. Using high speed video and force platform measurements, we quantified burst acceleration, escape speed, and mechanical power production in 42 wild-caught S. floridanus (29 juveniles, 13 adults; all rabbits >1kg in body mass were designated to be adults, based on published growth curves and evidence of epiphyseal fusion). A subsample of 22 rabbits (16 juveniles, 6 adults) were fitted with radio-telemetry collars for documenting survivorship in the wild. We found that acceleration and escape speed peaked in the late juvenile period in S. floridanus, at an age range that coincides with a period of pronounced demographic attrition in wild populations. Differences in mass-specific mechanical power production explained ∼75% of the variation in acceleration across the dataset, indicating that juvenile rabbits outpace adults by producing more power per unit body mass. We found a positive, though non-significant, association between peak escape speed and survivorship duration in the wild, suggesting a complex relationship between locomotor performance and fitness in growing S. floridanus.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Weisheng Wang ◽  
Peter J Schuette ◽  
Mimi Q La-Vu ◽  
Anita Torossian ◽  
Brooke C Tobias ◽  
...  

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.


2021 ◽  
Author(s):  
Weisheng Wang ◽  
Peter J Schuette ◽  
Mimi Q La-Vu ◽  
Brooke C Tobias ◽  
Marta Ceko ◽  
...  

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape from innate and conditioned threats. The hypothalamic dorsal premammillary nucleus (PMd) may control escape, as it is activated by escape-inducing threats and projects to the region most implicated in flight, the dorsolateral periaqueductal gray (dlPAG). We show that in mice cholecystokinin (cck)-expressing PMd cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Lastly, human fMRI data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd as a central node of the escape network.


2021 ◽  
Vol 224 (5) ◽  
pp. jeb235481
Author(s):  
Kiran Bhattacharyya ◽  
David L. McLean ◽  
Malcolm A. MacIver

ABSTRACTEscape maneuvers are key determinants of animal survival and are under intense selection pressure. A number of escape maneuver parameters contribute to survival, including response latency, escape speed and direction. However, the relative importance of these parameters is context dependent, suggesting that interactions between parameters and predatory context determine the likelihood of escape success. To better understand how escape maneuver parameters interact and contribute to survival, we analyzed the responses of larval zebrafish (Danio rerio) to the attacks of dragonfly nymphs (Sympetrum vicinum). We found that no single parameter explains the outcome. Instead, the relative intersection of the swept volume of the nymph's grasping organs with the volume containing all possible escape trajectories of the fish is the strongest predictor of escape success. In cases where the prey's motor volume exceeds that of the predator, the prey survives. By analyzing the intersection of these volumes, we compute the survival benefit of recruiting the Mauthner cell, a neuron in anamniotes devoted to producing escapes. We discuss how the intersection of motor volume approach provides a framework that unifies the influence of many escape maneuver parameters on the likelihood of survival.


2021 ◽  
Vol 502 (3) ◽  
pp. 3879-3884
Author(s):  
Giacomo Fragione ◽  
Abraham Loeb

ABSTRACT The first and second Gravitational Wave Transient Catalogs by the LIGO/Virgo Collaboration include 50 confirmed merger events from the first, second, and first half of the third observational runs. We compute the distribution of recoil kicks imparted to the merger remnants and estimate their retention probability within various astrophysical environments as a function of the maximum progenitor spin (χmax), assuming that the LIGO/Virgo binary black hole (BBH) mergers were catalyzed by dynamical assembly in a dense star cluster. We find that the distributions of average recoil kicks are peaked at about $150\, \rm km\, s^{-1}$, $250\, \rm km\, s^{-1}$, $350\, \rm km\, s^{-1}$, $600\, \rm km\, s^{-1}$, for maximum progenitor spins of 0.1, 0.3, 0.5, 0.8, respectively. Only environments with escape speed ${\gtrsim}100\, \rm km\, s^{-1}$, as found in galactic nuclear star clusters as well as in the most massive globular clusters and super star clusters, could efficiently retain the merger remnants of the LIGO/Virgo BBH population even for low progenitor spins (χmax = 0.1). In the case of high progenitor spins (χmax ≳ 0.5), only the most massive nuclear star clusters can retain the merger products. We also show that the estimated values of the effective spin and of the remnant spin of GW170729, GW190412, GW190519_153544, and GW190620_030421 can be reproduced if their progenitors were moderately spinning (χmax ≳ 0.3), while for GW190517_055101 if the progenitors were rapidly spinning (χmax ≳ 0.8). Alternatively, some of these events could be explained if at least one of the progenitors is already a second-generation BH, originated from a previous merger.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Samantha Twiname ◽  
Quinn P. Fitzgibbon ◽  
Alistair J. Hobday ◽  
Chris G. Carter ◽  
Michael Oellermann ◽  
...  

AbstractIn an ocean warming hotspot off south-east Australia, many species have expanded their ranges polewards, including the eastern rock lobster, Sagmariasus verreauxi. This species is likely extending its range via larval advection into Tasmanian coastal waters, which are occupied by the more commercially important southern rock lobster, Jasus edwardsii. Here, thermal tolerances of these lobster species at two life stages were investigated to assess how they may respond to warming ocean temperatures. We found that the pattern, optimum and magnitude of thermal responses differed between performance measures, life stages and species. Sagmariasus verreauxi had a warmer optimal temperature for aerobic scope and escape speed than J. edwardsii. However, J. edwardsii had a higher magnitude of escape speed, indicating higher capacity for escape performance. There were also differences between life stages within species, with the larval stage having higher variation in optimal temperatures between measures than juveniles. This inconsistency in performance optima and magnitude indicates that single performance measures at single life stages are unlikely to accurately predict whole animal performance in terms of life-time survival and fitness. However, combined results of this study suggest that with continued ocean warming, S. verreauxi is likely to continue to extend its distribution polewards and increase in abundance in Tasmania.


2020 ◽  
Vol 641 ◽  
pp. A45
Author(s):  
René Heller ◽  
Guillem Anglada-Escudé ◽  
Michael Hippke ◽  
Pierre Kervella

The solar photon pressure provides a viable source of thrust for spacecraft in the solar system. Theoretically it could also enable interstellar missions, but an extremely small mass per cross section area is required to overcome the solar gravity. We identify aerographite, a synthetic carbon-based foam with a density of 0.18 kg m−3 (15 000 times more lightweight than aluminum) as a versatile material for highly efficient propulsion with sunlight. A hollow aerographite sphere with a shell thickness ϵshl  =  1 mm could go interstellar upon submission to solar radiation in interplanetary space. Upon launch at 1 AU from the Sun, an aerographite shell with ϵshl  =  0.5 mm arrives at the orbit of Mars in 60 d and at Pluto’s orbit in 4.3 yr. Release of an aerographite hollow sphere, whose shell is 1 μm thick, at 0.04 AU (the closest approach of the Parker Solar Probe) results in an escape speed of nearly 6900 km s−1 and 185 yr of travel to the distance of our nearest star, Proxima Centauri. The infrared signature of a meter-sized aerographite sail could be observed with JWST up to 2 AU from the Sun, beyond the orbit of Mars. An aerographite hollow sphere, whose shell is 100 μm thick, of 1 m (5 m) radius weighs 230 mg (5.7 g) and has a 2.2 g (55 g) mass margin to allow interstellar escape. The payload margin is ten times the mass of the spacecraft, whereas the payload on chemical interstellar rockets is typically a thousandth of the weight of the rocket. Using 1 g (10 g) of this margin (e.g., for miniature communication technology with Earth), it would reach the orbit of Pluto 4.7 yr (2.8 yr) after interplanetary launch at 1 AU. Simplistic communication would enable studies of the interplanetary medium and a search for the suspected Planet Nine, and would serve as a precursor mission to α Centauri. We estimate prototype developments costs of 1 million USD, a price of 1000 USD per sail, and a total of < 10 million USD including launch for a piggyback concept with an interplanetary mission.


2020 ◽  
Vol 167 ◽  
pp. 101-109
Author(s):  
Francisco Javier Zamora-Camacho ◽  
Mar Comas ◽  
Gregorio Moreno-Rueda

2020 ◽  
Vol 497 (4) ◽  
pp. 5344-5363 ◽  
Author(s):  
F A Evans ◽  
M Renzo ◽  
E M Rossi

ABSTRACT Several stars detected moving at velocities near to or exceeding the Galactic escape speed likely originated in the Milky Way disc. We quantitatively explore the ‘binary supernova scenario’ hypothesis, wherein these ‘hyper-runaway’ stars are ejected at large peculiar velocities when their close, massive binary companions undergo a core-collapse supernova and the binary is disrupted. We perform an extensive suite of binary population synthesis simulations evolving massive systems to determine the assumptions and parameters that most impact the ejection rate of fast stars. In a simulation tailored to eject fast stars, we find the most likely hyper-runaway star progenitor binary is composed of a massive (${\sim}30\, \mathrm{ M}_{\odot }$) primary and an ${\sim}3\!-\!4\, \mathrm{ M}_{\odot }$ companion on an orbital period that shrinks to ≲1 d prior to the core collapse following a common-envelope phase. The black hole remnant formed from the primary must receive a natal kick ≳1000 km s−1 to disrupt the binary and eject the companion at a large velocity. We compare the fast stars produced in these simulations to a contemporary census of early-type Milky Way hyper-runaway star candidates. We find that these rare objects may be produced in sufficient number only when poorly constrained binary evolution parameters related to the strength of post-core-collapse remnant natal kicks and common-envelope efficiency are adjusted to values currently unsupported – but not excluded – by the literature. We discuss observational implications that may constrain the existence of these putative progenitor systems.


2020 ◽  
Vol 497 (3) ◽  
pp. 2930-2940
Author(s):  
D Boubert ◽  
D Erkal ◽  
A Gualandris

ABSTRACT Stars slingshotted by the supermassive black hole at the Galactic Centre escape from the Milky Way so quickly that their trajectories are almost straight lines. Previous works have shown how these ‘hypervelocity stars’ (stars moving faster than the local Galactic escape speed) are subsequently deflected by the gravitational field of the Milky Way and the Large Magellanic Cloud (LMC), but have neglected to account for the reflex motion of the Milky Way in response to the fly-by of the LMC. A consequence of this motion is that the hypervelocity stars we see in the outskirts of the Milky Way today were ejected from where the Milky Way centre was hundreds of millions of years ago. This change in perspective causes large apparent deflections of several degrees in the trajectories of the hypervelocity stars. We quantify these deflections by simulating the ejection of hypervelocity stars from an isolated Milky Way (with a spherical or flattened dark matter halo), from a fixed-in-place Milky Way with a passing LMC, and from a Milky Way that responds to the passage of the LMC, finding that LMC passage causes larger deflections than can be caused by a flattened Galactic dark matter halo in ΛCDM. The $10\, \mu \mathrm{as}\, \mathrm{yr}^{-1}$ proper motion precision necessary to measure these deflections will be possible with the combination of Gaia with the proposed GaiaNIR successor mission, and these measurements will directly probe the shape of the Milky Way, the mass of the LMC, and the dance of these two galaxies.


Sign in / Sign up

Export Citation Format

Share Document