Interplay of time-delayed feedback control and temporally correlated noise in excitable systems

Author(s):  
S. Brandstetter ◽  
M. A. Dahlem ◽  
E. Schöll

The interplay of time-delayed feedback and temporally correlated coloured noise in a single and two coupled excitable systems is studied in the framework of the FitzHugh–Nagumo (FHN) model. By using coloured noise instead of white noise, the noise correlation time is introduced as an additional time scale. We show that in a single FHN system the major time scale of oscillations is strongly influenced by the noise correlation time, which in turn affects the maxima of coherence with respect to the delay time. In two coupled FHN systems, coloured noise input to one subsystem influences coherence resonance and stochastic synchronization of both subsystems. Application of delayed feedback control to the coloured noise-driven subsystem is shown to change coherence and time scales of noise-induced oscillations in both systems, and to enhance or suppress stochastic synchronization under certain conditions.

Author(s):  
Yong Guo ◽  
Chuanbo Ren

In this paper, the mechanical model of two-degree-of-freedom vehicle semi-active suspension system based on time-delayed feedback control with vertical acceleration of the vehicle body was studied. With frequency-domain analysis method, the optimization of time-delayed feedback control parameters of vehicle suspension system in effective frequency band was studied, and a set of optimization method of time-delayed feedback control parameters based on “equivalent harmonic excitation” was proposed. The time-domain simulation results of vehicle suspension system show that compared with the passive control, the time-delayed feedback control based on the vertical acceleration of the vehicle body under the optimal time-delayed feedback control effectively broadens the vibration absorption bandwidth of the vehicle suspension system. The ride comfort and stability of the vehicle under random road excitation are significantly improved, which provides a theoretical basis for the selection of time-delayed feedback control strategy and the optimal design of time-delayed feedback control parameters of vehicle suspension system.


Sign in / Sign up

Export Citation Format

Share Document