excitable systems
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 26)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 32 (1) ◽  
pp. 011104
Author(s):  
Igor Franović ◽  
Sebastian Eydam ◽  
Nadezhda Semenova ◽  
Anna Zakharova
Keyword(s):  

2021 ◽  
Vol 17 (10) ◽  
pp. e1009476
Author(s):  
Rupamanjari Majumder ◽  
Sayedeh Hussaini ◽  
Vladimir S. Zykov ◽  
Stefan Luther ◽  
Eberhard Bodenschatz

Interruptions in nonlinear wave propagation, commonly referred to as wave breaks, are typical of many complex excitable systems. In the heart they lead to lethal rhythm disorders, the so-called arrhythmias, which are one of the main causes of sudden death in the industrialized world. Progress in the treatment and therapy of cardiac arrhythmias requires a detailed understanding of the triggers and dynamics of these wave breaks. In particular, two very important questions are: 1) What determines the potential of a wave break to initiate re-entry? and 2) How do these breaks evolve such that the system is able to maintain spatiotemporally chaotic electrical activity? Here we approach these questions numerically using optogenetics in an in silico model of human atrial tissue that has undergone chronic atrial fibrillation (cAF) remodelling. In the lesser studied sub-threshold illumination régime, we discover a new mechanism of wave break initiation in cardiac tissue that occurs for gentle slopes of the restitution characteristics. This mechanism involves the creation of conduction blocks through a combination of wavefront-waveback interaction, reshaping of the wave profile and heterogeneous recovery from the excitation of the spatially extended medium, leading to the creation of re-excitable windows for sustained re-entry. This finding is an important contribution to cardiac arrhythmia research as it identifies scenarios in which low-energy perturbations to cardiac rhythm can be potentially life-threatening.


Author(s):  
Serhiy Yanchuk ◽  
Antonio C. Roque ◽  
Elbert E. N. Macau ◽  
Jürgen Kurths

AbstractThis special issue presents a series of 33 contributions in the area of dynamical networks and their applications. Part of the contributions is devoted to theoretical and methodological aspects of dynamical networks, such as collective dynamics of excitable systems, spreading processes, coarsening, synchronization, delayed interactions, and others. A particular focus is placed on applications to neuroscience and Earth science, especially functional climate networks. Among the highlights, various methods for dealing with noise and stochastic processes in neuroscience are presented. A method for constructing weighted networks with arbitrary topologies from a single dynamical node with delayed feedback is introduced. Also, a generalization of the concept of geodesic distances, a path-integral formulation of network-based measures is developed, which provides fundamental insights into the dynamics of disease transmission. The contributions from the Earth science application field substantiate predictive power of climate networks to study challenging Earth processes and phenomena.


2021 ◽  
Vol 118 (40) ◽  
pp. e2104724118
Author(s):  
Zeng Tao Liu ◽  
Yan Shi ◽  
Yongfeng Zhao ◽  
Hugues Chaté ◽  
Xia-qing Shi ◽  
...  

Virtually all of the many active matter systems studied so far are made of units (biofilaments, cells, colloidal particles, robots, animals, etc.) that move even when they are alone or isolated. Their collective properties continue to fascinate, and we now understand better how they are unique to the bulk transduction of energy into work. Here we demonstrate that systems in which isolated but potentially active particles do not move can exhibit specific and remarkable collective properties. Combining experiments, theory, and numerical simulations, we show that such subcritical active matter can be realized with Quincke rollers, that is, dielectric colloidal particles immersed in a conducting fluid subjected to a vertical DC electric field. Working below the threshold field value marking the onset of motion for a single colloid, we find fast activity waves, reminiscent of excitable systems, and stable, arbitrarily large self-standing vortices made of thousands of particles moving at the same speed. Our theoretical model accounts for these phenomena and shows how they can arise in the absence of confining boundaries and individual chirality. We argue that our findings imply that a faithful description of the collective properties of Quincke rollers need to consider the fluid surrounding particles.


2021 ◽  
Author(s):  
Maxim Ryzhii ◽  
Elena Ryzhii

AbstractSimplified nonlinear models of biological cells are widely used in computational electrophysiology. The models reproduce qualitatively many of the characteristics of various organs, such as the heart, brain and intestine. In contrast to complex cellular ion-channel models, the simplified models usually contain a small number of variables and parameters which facilitates nonlinear analysis and reduces computational load. In this paper, we consider pacemaking variants of the Aliev-Panfilov and Corrado two-variable excitable cell models. We conducted numerical simulation study of these models, and investigated main nonlinear dynamic features of both isolated cells and 1D coupled pacemaker-excitable systems. Simulations of 2D sinoatrial node and 3D intestine tissue as application examples of combined pacemaker-excitable systems demonstrated results similar to obtained previously. The uniform formulation for the conventional excitable cell models and proposed pacemaker models allows a convenient and easy implementation for the construction of personalized physiological models, inverse tissue modeling, and development of real-time simulation systems for various organs that contain both pacemaker and excitable cells.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2188
Author(s):  
Yuzuru Kato ◽  
Jinjie Zhu ◽  
Wataru Kurebayashi ◽  
Hiroya Nakao

The asymptotic phase is a fundamental quantity for the analysis of deterministic limit-cycle oscillators, and generalized definitions of the asymptotic phase for stochastic oscillators have also been proposed. In this article, we show that the asymptotic phase and also amplitude can be defined for classical and semiclassical stochastic oscillators in a natural and unified manner by using the eigenfunctions of the Koopman operator of the system. We show that the proposed definition gives appropriate values of the phase and amplitude for strongly stochastic limit-cycle oscillators, excitable systems undergoing noise-induced oscillations, and also for quantum limit-cycle oscillators in the semiclassical regime.


Author(s):  
Antoine Pauthier ◽  
Jens D. M. Rademacher ◽  
Dennis Ulbrich

AbstractMotivated by studies of the Greenberg-Hastings cellular automata (GHCA) as a caricature of excitable systems, in this paper we study kink-antikink dynamics in the perhaps simplest PDE model of excitable media given by the scalar reaction diffusion-type $$\theta $$ θ -equations for excitable angular phase dynamics. On the one hand, we qualitatively study geometric kink positions using the comparison principle and the theory of terraces. This yields the minimal initial distance as a global lower bound, a well-defined sequence of collision data for kinks- and antikinks, and implies that periodic pure kink sequences are asymptotically equidistant. On the other hand, we study metastable dynamics of finitely many kinks using weak interaction theory for certain analytic kink positions, which admits a rigorous reduction to ODE. By blow-up type singular rescaling we show that distances become ordered in finite time, and eventually diverge. We conclude that diffusion implies a loss of information on kink distances so that the entropic complexity based on positions and collisions in the GHCA does not simply carry over to the PDE model.


Author(s):  
Argha Mondal ◽  
Kshitish Ch. Mistri ◽  
M.A. Aziz-Alaoui ◽  
Ranjit Kumar Upadhyay

Sign in / Sign up

Export Citation Format

Share Document