scholarly journals The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview

Author(s):  
M. Lakshmanan

The Landau–Lifshitz–Gilbert (LLG) equation is a fascinating nonlinear evolution equation both from mathematical and physical points of view. It is related to the dynamics of several important physical systems such as ferromagnets, vortex filaments, moving space curves, etc. and has intimate connections with many of the well-known integrable soliton equations, including nonlinear Schrödinger and sine-Gordon equations. It can admit very many dynamical structures including spin waves, elliptic function waves, solitons, dromions, vortices, spatio-temporal patterns, chaos, etc. depending on the physical and spin dimensions and the nature of interactions. An exciting recent development is that the spin torque effect in nanoferromagnets is described by a generalization of the LLG equation that forms a basic dynamical equation in the field of spintronics. This article will briefly review these developments as a tribute to Robin Bullough who was a great admirer of the LLG equation.

2021 ◽  
Author(s):  
Hongcai Ma ◽  
Shupan Yue ◽  
Yidan Gao ◽  
Aiping Deng

Abstract Exact solutions of a new (2+1)-dimensional nonlinear evolution equation are studied. Through the Hirota bilinear method, the test function method and the improved tanh-coth and tah-cot method, with the assisstance of symbolic operations, one can obtain the lump solutions, multi lump solutions and more soliton solutions. Finally, by determining different parameters, we draw the three-dimensional plots and density plots at different times.


2007 ◽  
Vol 09 (02) ◽  
pp. 217-251
Author(s):  
CECIL P. GRÜNFELD

We investigate the Cauchy problem for a nonlinear evolution equation, formulated in an abstract Lebesgue space, as a generalization of various Boltzmann kinetic models. Our main result provides sufficient conditions for the existence, uniqueness, and positivity of global in time solutions. The analysis extends nontrivially monotonicity methods, originally developed in the context of the existence theory for the classical Boltzmann equation in L1. Our application examples are Smoluchowski's coagulation equation, a Povzner-like equation with dissipative collisions, and a Boltzmann model with chemical reactions, for which we obtain a unitary existence theory, with improved results, compared to the literature.


Sign in / Sign up

Export Citation Format

Share Document