Towards aeroacoustic sound generation by flow through porous media

Author(s):  
Manuel Hasert ◽  
Joerg Bernsdorf ◽  
Sabine Roller

In this work, we present single-step aeroacoustic calculations using the Lattice Boltzmann method (LBM). Our application case consists of the prediction of an acoustic field radiating from the outlet of a porous media silencer. It has been proved that the LBM is able to simulate acoustic wave generation and propagation. Our particular aim is to validate the LBM for aeroacoustics in porous media. As a validation case, we consider a spinning vortex pair emitting sound waves as the vortices rotate around a common centre. Non-reflective boundary conditions based on characteristics have been adopted from Navier–Stokes methods and are validated using the time evolution of a Gaussian pulse. We show preliminary results of the flow through the porous medium.

2015 ◽  
Vol 7 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Changsheng Huang ◽  
Baochang Shi ◽  
Nanzhong He ◽  
Zhenhua Chai

AbstractThe lattice Boltzmann method (LBM) can gain a great amount of performance benefit by taking advantage of graphics processing unit (GPU) computing, and thus, the GPU, or multi-GPU based LBM can be considered as a promising and competent candidate in the study of large-scale fluid flows. However, the multi-GPU based lattice Boltzmann algorithm has not been studied extensively, especially for simulations of flow in complex geometries. In this paper, through coupling with the message passing interface (MPI) technique, we present an implementation of multi-GPU based LBM for fluid flow through porous media as well as some optimization strategies based on the data structure and layout, which can apparently reduce memory access and completely hide the communication time consumption. Then the performance of the algorithm is tested on a one-node cluster equipped with four Tesla C1060 GPU cards where up to 1732 MFLUPS is achieved for the Poiseuille flow and a nearly linear speedup with the number of GPUs is also observed.


2014 ◽  
Vol 36 (3) ◽  
pp. 310-325 ◽  
Author(s):  
Nematollah Zamani ◽  
Roland Kaufmann ◽  
Pawel Kosinski ◽  
Arne Skauge

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Krzysztof M. Graczyk ◽  
Maciej Matyka

AbstractConvolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ($$\varphi$$ φ ), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered. The fluid flow through a porous medium is simulated with the lattice Boltzmann method. The analysis has been performed for the systems with $$\varphi \in (0.37,0.99)$$ φ ∈ ( 0.37 , 0.99 ) which covers five orders of magnitude a span for permeability $$k \in (0.78, 2.1\times 10^5)$$ k ∈ ( 0.78 , 2.1 × 10 5 ) and tortuosity $$T \in (1.03,2.74)$$ T ∈ ( 1.03 , 2.74 ) . It is shown that the CNNs can be used to predict the porosity, permeability, and tortuosity with good accuracy. With the usage of the CNN models, the relation between T and $$\varphi$$ φ has been obtained and compared with the empirical estimate.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 133 ◽  
Author(s):  
Junjie Ren ◽  
Qiao Zheng ◽  
Ping Guo ◽  
Chunlan Zhao

In the development of tight gas reservoirs, gas flow through porous media usually takes place deep underground with multiple mechanisms, including gas slippage and stress sensitivity of permeability and porosity. However, little work has been done to simultaneously incorporate these mechanisms in the lattice Boltzmann model for simulating gas flow through porous media. This paper presents a lattice Boltzmann model for gas flow through porous media with a consideration of these effects. The apparent permeability and porosity are calculated based on the intrinsic permeability, intrinsic porosity, permeability modulus, porosity sensitivity exponent, and pressure. Gas flow in a two-dimensional channel filled with a homogeneous porous medium is simulated to validate the present model. Simulation results reveal that gas slippage can enhance the flow rate in tight porous media, while stress sensitivity of permeability and porosity reduces the flow rate. The simulation results of gas flow in a porous medium with different mineral components show that the gas slippage and stress sensitivity of permeability and porosity not only affect the global velocity magnitude, but also have an effect on the flow field. In addition, gas flow in a porous medium with fractures is also investigated. It is found that the fractures along the pressure-gradient direction significantly enhance the total flow rate, while the fractures perpendicular to the pressure-gradient direction have little effect on the global permeability of the porous medium. For the porous medium without fractures, the gas-slippage effect is a major influence factor on the global permeability, especially under low pressure; for the porous medium with fractures, the stress-sensitivity effect plays a more important role in gas flow.


Sign in / Sign up

Export Citation Format

Share Document