scholarly journals Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments

Author(s):  
R. Stuart Haszeldine ◽  
Stephanie Flude ◽  
Gareth Johnson ◽  
Vivian Scott

How will the global atmosphere and climate be protected? Achieving net-zero CO 2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO 2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO 2  yr −1 , not the minimum 6000 Mt CO 2  yr −1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO 2 storage. A second simple action is to assign a Certificate of CO 2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO 2 to be stored. No CCS means no 2°C. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

2018 ◽  
Author(s):  
Chelsey Bryson

In 2015, the historic Paris Agreement set a global goal of limiting warming to “well below 2 degrees” through a robust, country-driven framework. Unfortunately, just two years later, it is increasingly clear that the global community is not on track to meet this objective. This is evidenced by recent studies projecting that temperatures may increase by between 2.7-3.7°C by 2100, and continue to rise for many centuries thereafter given inertia in the climatic system.1 Further, the IPCC is increasingly including Negative Emissions Technology (NETs) in their models in order to achieve the 2-degree target. While many hear the term ‘CDR’ and think of Bioenergy and Carbon Capture and Storage (BECCS) or Direct Air Capture (DAC), blue carbon is a lesser-known but low-cost and effective CDR option that can help meet the goals set out in Paris.


2019 ◽  
Vol 22 (7) ◽  
pp. 6851-6875 ◽  
Author(s):  
Anders Hansson ◽  
Mathias Fridahl ◽  
Simon Haikola ◽  
Pius Yanda ◽  
Noah Pauline ◽  
...  

AbstractMost mitigation scenarios compatible with a likely change of holding global warming well below 2 °C rely on negative emissions technologies (NETs). According to the integrated assessment models (IAMs) used to produce mitigation scenarios for the IPCC reports, the NET with the greatest potential to achieve negative emissions is bioenergy with carbon capture and storage (BECCS). Crucial questions arise about where the enormous quantities of biomass needed according to the IAM scenarios could feasibly be produced in a sustainable manner. Africa is attractive in the context of BECCS because of large areas that could contribute biomass energy and indications of substantial underground CO2 storage capacities. However, estimates of large biomass availability in Africa are usually based on highly aggregated datasets, and only a few studies explore future challenges or barriers for BECCS in any detail. Based on previous research and literature, this paper analyses the pre-conditions for BECCS in Tanzania by studying what we argue are the applications of BECCS, or the components of the BECCS chain, that are most feasible in the country, namely (1) as applied to domestic sugarcane-based energy production (bioethanol), and (2) with Tanzania in a producer and re-growth role in an international BECCS chain, supplying biomass or biofuels for export to developed countries. The review reveals that a prerequisite for both options is either the existence of a functional market for emissions trading and selling, making negative emissions a viable commercial investment, or sustained investment through aid programmes. Also, historically, an important barrier to the development of production capacity of liquid biofuels for export purposes has been given by ethical dilemmas following in the wake of demand for land to facilitate production of biomass, such as sugarcane and jatropha. In these cases, conflicts over access to land and mismanagement have been more of a rule than an exception. Increased production volumes of solid biomass for export to operations that demand bioenergy, be it with or without a CCS component, is likely to give rise to similar conflicts. While BECCS may well play an important role in reducing emissions in countries with high capacity to act combined with existing large point sources of biogenic CO2 emissions, it seems prudent to proceed with utmost caution when implicating BECCS deployment in least developed countries, like Tanzania.The paper argues that negative BECCS-related emissions from Tanzania should not be assumed in global climate mitigation scenarios.


2018 ◽  
Vol 1 ◽  
Author(s):  
Clair Gough ◽  
Samira Garcia-Freites ◽  
Christopher Jones ◽  
Sarah Mander ◽  
Brendan Moore ◽  
...  

Non-technical summaryBiomass energy with carbon capture and storage (BECCS) is represented in many integrated assessment models as a keystone technology in delivering the Paris Agreement on climate change. This paper explores six key challenges in relation to large scale BECCS deployment and considers ways to address these challenges. Research needs to consider how BECCS fits in the context of other mitigation approaches, how it can be accommodated within existing policy drivers and goals, identify where it fits within the wider socioeconomic landscape, and ensure that genuine net negative emissions can be delivered on a global scale.


2017 ◽  
Vol 114 ◽  
pp. 6036-6043 ◽  
Author(s):  
Sarah Mander ◽  
Kevin Anderson ◽  
Alice Larkin ◽  
Clair Gough ◽  
Naomi Vaughan

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jay Fuhrman ◽  
Andres F Clarens ◽  
Haewon McJeon ◽  
Pralit Patel ◽  
Yang Ou ◽  
...  

Abstract China’s pledge to reach carbon neutrality before 2060 is an ambitious goal and could provide the world with much-needed leadership on how to limit warming to +1.5°C warming above preindustrial levels by the end of the century. But the pathways that would achieve net zero by 2060 are still unclear, including the role of negative emissions technologies. We use the Global Change Analysis Model to simulate how negative emissions technologies, in general, and direct air capture (DAC) in particular, could contribute to China’s meeting this target. Our results show that negative emissions could play a large role, offsetting on the order of 3 GtCO2 per year from difficult-to-mitigate sectors, such as freight transportation and heavy industry. This includes up to a 1.6 GtCO2 per year contribution from DAC, constituting up to 60% of total projected negative emissions in China. But DAC, like bioenergy with carbon capture and storage and afforestation, has not yet been demonstrated anywhere approaching the scales required to meaningfully contribute to climate mitigation. Deploying NETs at these scales will have widespread impacts on financial systems and natural resources, such as water, land and energy in China.


Subject Carbon capture and storage technology. Significance Carbon capture and storage (CCS) is considered critical to achieving the ambitious reductions in greenhouse gas emissions set out in the 2015 Paris Agreement. CCS technology would allow power plants and industrial facilities to continue burning fossil fuels without pumping climate change-inducing gases into the atmosphere. However, deployment of CCS has been slow and the prospect of meeting the expectations placed upon it by the Paris climate negotiators is moving further out of scope. The recent cancellation of the Kemper CCS project in the United States is a bad sign for the future of the technology. Impacts Without faster deployment of CCS, many countries will struggle to meet their Paris Agreement emissions reduction pledges. If the rollout of CCS continues to falter, more wind and solar power will be needed to reduce carbon emissions. Absent a viable CCS model, it will be even more difficult to replace aged coal plants in the United States and other developed economies.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2592 ◽  
Author(s):  
Haibing Liu ◽  
Serhat Yüksel ◽  
Hasan Dinçer

This study focuses on carbon capture and distribution technology, which is a new approach to the solution of this problem. In order to use this technology more effectively, six significant criteria are defined by considering the essentials of the international Loss Control Institute and the supported literature. Moreover, the analytic network process (ANP) is applied for measuring the relative importance of each factor. The findings demonstrate that organizational factor has the greatest importance, whereas market factor is the weakest element. In addition, the education of the personnel is the most important criterion for low-cost industrial carbon dioxide capture and separation technologies. In this context, it is seen that companies need competent personnel in order to reduce the costs of these products. There are two types of strategies that companies can develop to achieve this goal. Firstly, it would be appropriate for companies to provide their staff with the necessary training on carbon capture and storage technologies. The second most important strategy is for the new personnel to be employed in the company. When choosing new employees, it is necessary to measure whether they have sufficient knowledge about this technology. These strategies will contribute to lower costs when developing products for carbon capture and storage technology.


2021 ◽  
Vol 2 ◽  
Author(s):  
Jean-Pierre Gattuso ◽  
Phillip Williamson ◽  
Carlos M. Duarte ◽  
Alexandre K. Magnan

The effectiveness, feasibility, duration of effects, co-benefits, disbenefits, cost effectiveness and governability of four ocean-based negative emissions technologies (NETs) are assessed in comparison to eight other ocean-based measures. Their role in revising UNFCCC Parties' future Nationally Determined Contributions is discussed in the broad context of ocean-based actions for both mitigation and ecological adaptation. All measures are clustered in three policy-relevant categories (Decisive, Low Regret, Concept Stage). None of the ocean-based NETs assessed are identified as Decisive at this stage. One is Low Regret (Restoring and increasing coastal vegetation), and three are at Concept Stage, one with low to moderate potential disbenefits (Marine bioenergy with carbon capture and storage) and two with potentially high disbenefits (Enhancing open-ocean productivity and Enhancing weathering and alkalinization). Ocean-based NETs are uncertain but potentially highly effective. They have high priority for research and development.


Sign in / Sign up

Export Citation Format

Share Document