scholarly journals Analyzing the Criteria of Efficient Carbon Capture and Separation Technologies for Sustainable Clean Energy Usage

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2592 ◽  
Author(s):  
Haibing Liu ◽  
Serhat Yüksel ◽  
Hasan Dinçer

This study focuses on carbon capture and distribution technology, which is a new approach to the solution of this problem. In order to use this technology more effectively, six significant criteria are defined by considering the essentials of the international Loss Control Institute and the supported literature. Moreover, the analytic network process (ANP) is applied for measuring the relative importance of each factor. The findings demonstrate that organizational factor has the greatest importance, whereas market factor is the weakest element. In addition, the education of the personnel is the most important criterion for low-cost industrial carbon dioxide capture and separation technologies. In this context, it is seen that companies need competent personnel in order to reduce the costs of these products. There are two types of strategies that companies can develop to achieve this goal. Firstly, it would be appropriate for companies to provide their staff with the necessary training on carbon capture and storage technologies. The second most important strategy is for the new personnel to be employed in the company. When choosing new employees, it is necessary to measure whether they have sufficient knowledge about this technology. These strategies will contribute to lower costs when developing products for carbon capture and storage technology.

Significance The extent of their preparedness reflects a combination of willingness and ability. Willingness is evident in government policy and in the public's environmental consciousness and support for government targets and policies. Ability stems from wealth, both public and private, industrial expertise and the capacity to innovate. Impacts North European countries are likely to take a lead in hydrogen and carbon capture and storage technologies. Lower-income European countries will struggle to raise capital to invest in electricity transmission. Those countries able to develop deployable clean energy technologies will be better placed to offset the costs of transition.


2020 ◽  
Vol 10 (21) ◽  
pp. 7463
Author(s):  
Nikolaos Koukouzas ◽  
Pavlos Tyrologou ◽  
Petros Koutsovitis

This Special Issue presents sixteen scientific papers that explore the application of carbon capture and storage technologies, mitigating the effects of climate change [...]


Energy Policy ◽  
2007 ◽  
Vol 35 (8) ◽  
pp. 4368-4380 ◽  
Author(s):  
Klaas van Alphen ◽  
Quirine van Voorst tot Voorst ◽  
Marko P. Hekkert ◽  
Ruud E.H.M. Smits

2002 ◽  
Vol 13 (6) ◽  
pp. 883-900 ◽  
Author(s):  
Clair Gough ◽  
Ian Taylor ◽  
Simon Shackley

Geological and ocean sequestration of carbon dioxide is a potential climate change mitigation option that is currently receiving an increasing level of attention within business, academic and policy communities. This paper presents a preliminary investigation of possible public reaction to the technologies under consideration. Using a focus group approach, we consider the similarities between carbon storage technologies and analogous technologies that have generated strong reactions with the public. Initial results suggest that, in principle, carbon capture and storage may be seen as an acceptable approach as a bridging policy while other options are developed. However, concerns were raised regarding the safety of storage and trust in the ability of the various institutions to oversee the process in the long term. This analysis forms part of an on-going study which will continue to investigate the perceptions of a range of stakeholders.


2011 ◽  
Vol 32 (3) ◽  
Author(s):  
Rolf Golombek ◽  
Mads Greaker ◽  
Sverre A.C. Kittelsen ◽  
Ole Røgeberg ◽  
Finn Roar Aune

2018 ◽  
Author(s):  
Chelsey Bryson

In 2015, the historic Paris Agreement set a global goal of limiting warming to “well below 2 degrees” through a robust, country-driven framework. Unfortunately, just two years later, it is increasingly clear that the global community is not on track to meet this objective. This is evidenced by recent studies projecting that temperatures may increase by between 2.7-3.7°C by 2100, and continue to rise for many centuries thereafter given inertia in the climatic system.1 Further, the IPCC is increasingly including Negative Emissions Technology (NETs) in their models in order to achieve the 2-degree target. While many hear the term ‘CDR’ and think of Bioenergy and Carbon Capture and Storage (BECCS) or Direct Air Capture (DAC), blue carbon is a lesser-known but low-cost and effective CDR option that can help meet the goals set out in Paris.


Sign in / Sign up

Export Citation Format

Share Document