steel production
Recently Published Documents


TOTAL DOCUMENTS

1120
(FIVE YEARS 345)

H-INDEX

32
(FIVE YEARS 8)

Author(s):  
Martin R. Machat ◽  
Jakob Marbach ◽  
Hannah Schumacher ◽  
Suresh Raju ◽  
Markus Lansing ◽  
...  

Provided is a concept of how the carbon content of CO/CO2-containing blast furnace gas (BFG) from steel production could be utilized in a sequence of selective chemical conversion steps to produce high value intermediates for the polymer industry.


Author(s):  
Roman Matykowski ◽  
Anna Tobolska

Based on World Steel Association statistical data, this study brings together changes in the geographical pattern of global steel production in the first two decades of the 21st century and its fluctuations during economic and social crises. The analysis indicates a strong concentration of production in several countries, and among them, China has become the leader in the last two decades. Since 2017, it has produced more than half of all steel globally, and in 2019 its annual production exceeded one billion tonnes. In 2020 the largest Chinese concern, China Baowu Group, ousted ArcelorMittal from its leading position in the ranking of the world’s largest steel concerns. Such an intense concentration of steel production in one country and the strategies of internal consolidation of Chinese steel producers are a clear signal that China is taking control of the global market for this raw material, essential for many economic sectors.


10.30544/776 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 437-447
Author(s):  
Marija Mihailović ◽  
Karlo Raić

When the quantitative characterization of non-metallic inclusions in steel is done and the effect of limiting factors is assessed, and based on that the possibility of reconstruction of the total content of non-metallic inclusions in steel is estimated, further considerations can be directed towards predicting the model of size distribution curve. The aim of this work is to establish relations on the basis of which it will be possible to quantify the content of non-metallic inclusions in extra-pure steels, when metallographic control is difficult or even impossible by routine procedures.


Significance Price rises were underpinned by higher-than-expected steel production, requiring additional graphite for the industrial process. Prices were also supported by fresh environmental inspections of Chinese production hubs in several provinces, when plants with excessive emissions were banned from applying for a 'pollutant discharge permit' for up to three years. Impacts Given the size of its steel industry, China will continue to dominate the graphite market; it accounts for 55% of global demand. Graphite developers will benefit from investors’ interest in the battery sector. Talga’s Vittangi project in northern Sweden has been confirmed as the world's highest-grade graphite deposit. The unstable security situation in Mozambique raises questions about the near-term viability of graphite projects in the country.


2021 ◽  
Vol 100 (4) ◽  
pp. 33-44
Author(s):  
O.S. Vodennikova ◽  
◽  
P.V. Holovkov ◽  

Modern technological schemes of steel production do not allow to achieve low (< 0.01 % S) and ultra-low (<0.005 % S) sulfur content on the production of in the metal directly. That is why out-of-furnace steel treatment is often used to remove sulfur. Desulfurization process of steel depends on the chemical composition of the slag, the time of its formation in the ladle, metal oxidation, conditions of mixing of steel in a ladle, additional technological operations and ladle metal processing. Methods are widely used for desulfurization of steel treatment of steel with solid slag-forming mixtures, synthetic slag, lime-aluminous slag, silico-calcium and other powdered materials. Modern approaches to the process of steel desulfurization in conditions steel production are analyzed in the Study. In particular, the Ukrainian (on the example of PJSC ‘Azovstal Iron & Steel Works’ and PJSC ‘Dneprovsky Integrated Iron & Steel Works named after Dzershinsky’) and foreign (on the example of PJSC ‘Severstal’ and PJSC ‘Magnitogorsk Iron & Steel Works’) experience of desulfurization under oxygen converter production. The use of technological complexes ‘Installation of pig iron desulfurization steel making unit’ and ‘Cast iron desulfurization installation steel making unit is ‘oven-bucket’ installation’ provides a deeper desulfurization of steel, the possibility of optimizing the cost of steel production, expands range of scarce products and eliminates a number of restrictive conditions that complicate current production. The analysis of steel C80D desulfurization process is given in the conditions of JSC ‘Moldova Steel Works’, in which partial sulfur removal occurs in an arc steel making furnace, and the ultra-low content is achieved by creating a highly basic refining slag in the process out-of-furnace processing of steel. The study of the kinetics of the desulfurization process of 20GL steel in the conditions of JSC ‘Tashkent Mechanical Plant’ with the use of solid slag-forming mixtures and modification of steel with rare-earth metals is analyzed. The issue of desulfurization of electric steel in the conditions of OJSC ‘Byelorussian Steel Works’ with injection of powdered materials through the installation ‘Velko’ during out-of-furnace processing of steel is considered. Keywords: steel desulfurization, desulfurizer reagent, degree of desulfurization, cast iron desulfurization installation, out-of-furnace processing of steel, ‘‘oven-bucket’’ installation.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8518
Author(s):  
Hannu Karjunen ◽  
Eero Inkeri ◽  
Tero Tynjälä

Hydrogen is a versatile feedstock for various chemical and industrial processes, as well as an energy carrier. Dedicated hydrogen infrastructure is envisioned to conceptualize in hydrogen valleys, which link together the suppliers and consumers of hydrogen, heat, oxygen, and electricity. One potential hydrogen valley is the Bay of Bothnia, located in the northern part of the Baltic Sea between Finland and Sweden. The region is characterized as having excellent wind power potential, a strong forest cluster with numerous pulp and paper mills, and significant iron ore and steel production. The study investigates the hydrogen-related opportunities in the region, focusing on infrastructural requirements, flexibility, and co-operation of different sectors. The study found that local wind power capacity is rapidly increasing and will eventually enable the decarbonization of the steel sector in the area, along with moderate Power-to-X implementation. In such case, the heat obtained as a by-product from the electrolysis of hydrogen would greatly exceed the combined district heat demand of the major cities in the area. To completely fulfil its district heat demand, the city of Oulu was simulated to require 0.5–1.2 GW of electrolyser capacity, supported by heat pumps and optionally with heat storages.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8349
Author(s):  
Alla Toktarova ◽  
Lisa Göransson ◽  
Filip Johnsson

In Europe, electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation, mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution, which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser, direct reduction shaft, electric arc furnace, as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions, we show that the electricity price following steel production reduces the total steel production cost by 23% and 17%, respectively, as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1551
Author(s):  
Jaka Burja ◽  
Barbara Šetina Batič ◽  
Tilen Balaško

Lightweight Fe-Mn-Al-C steels have low density, and high mechanical properties, which makes them a possibility for weight reduction in vehicles for road transport. In steel production, as-cast microstructure is an important parameter for further processing. The as-cast microstructure of five lightweight duplex steels was investigated: Fe-15Mn-10Al-0.8C, Fe-15Mn-10Al-1.7Ni-0.8C, Fe-15Mn-10Al-3.9Ni-0.8C, Fe-15Mn-10Al-5.6Ni-0.8C and Fe-15Mn-10Al-8.6Ni-0.8C. The influence of Ni was analysed through thermodynamic calculations and microstructural characterization. The samples were analysed through an optical and electron microscopy. The base microstructure of the studied steel consists of ferrite and austenite. Further investigation showed that the decomposition of austenite was accompanied by the formation of kappa carbides and the B2 ordered phase. The addition of Ni prevented the formation of a lamellar kappa ferrite morphology, but at 5.6 wt.% Ni, the decomposition of austenite was most severe, resulting in a large amount of kappa carbides and a B2 ordered phase.


Sign in / Sign up

Export Citation Format

Share Document