Astrochemical studies at the Cryogenic Storage Ring

Author(s):  
H. Kreckel ◽  
O. Novotný ◽  
A. Wolf

The new Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics (Heidelberg, Germany) has recently become operational. One of the main research areas foreseen for this unique facility is astrochemical studies with cold molecular ions. The spontaneous radiative cooling of the prototype interstellar molecule CH + to its lowest rotational states has been demonstrated by photodissociation spectroscopy, paving the way for experiments under true interstellar conditions. To this end, a low-energy electron cooler and a neutral atom beam set-up for merged beams studies have been constructed. These experiments have the potential to provide energy-resolved rate coefficients for fundamental astrochemical processes involving state-selected molecular ions. The main target reactions include some of the key processes of interstellar chemistry, such as the electron recombination of H 3 + , charge exchange between H 2 + and H, or the formation of CH + in collisions of triatomic hydrogen ions and C atoms. This article is part of a discussion meeting issue ‘Advances in hydrogen molecular ions: H 3 + , H 5 + and beyond’.

Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 676-679 ◽  
Author(s):  
Oldřich Novotný ◽  
Patrick Wilhelm ◽  
Daniel Paul ◽  
Ábel Kálosi ◽  
Sunny Saurabh ◽  
...  

The epoch of first star formation in the early Universe was dominated by simple atomic and molecular species consisting mainly of two elements: hydrogen and helium. Gaining insight into this constitutive era requires a thorough understanding of molecular reactivity under primordial conditions. We used a cryogenic ion storage ring combined with a merged electron beam to measure state-specific rate coefficients of dissociative recombination, a process by which electrons destroy molecular ions. We found a pronounced decrease of the electron recombination rates for the lowest rotational states of the helium hydride ion (HeH+), compared with previous measurements at room temperature. The reduced destruction of cold HeH+ translates into an enhanced abundance of this primordial molecule at redshifts of first star and galaxy formation.


2006 ◽  
Vol 15 (08) ◽  
pp. 1941-1956 ◽  
Author(s):  
WENLONG ZHAN ◽  
HUSHAN XU ◽  
ZHIYU SUN ◽  
GUOQING XIAO ◽  
JIAWEN XIA ◽  
...  

HIRFL has been upgraded for basic research on nuclear physics, atomic physics, irradiative material and biology from beginning of this decade. So far, the main performances of HIRFL have improved in the beam species from light ion to uranium and the maximum beam intensities reaching ~10μA from SFC, 1.5 μA from SSC. Therefore, some experiments have been performed during this period, especially, on new isotope synthesis and unstable nuclear physics. The new upgrading project Cooling Storage Ring (CSR) is under commissioning by ~2p μA carbon beam stripping injection. About 109 C ion have stored inside CSRm, and part of them have been cooling down by the electron cooler. The acceleration of CSRm also has been test successful. Some future experiment are under development.


2005 ◽  
Vol 4 ◽  
pp. 296-299 ◽  
Author(s):  
D Zajfman ◽  
A Wolf ◽  
D Schwalm ◽  
D A Orlov ◽  
M Grieser ◽  
...  

2017 ◽  
Vol 875 ◽  
pp. 012016 ◽  
Author(s):  
Gustav Eklund ◽  
Kiattichart Chartkunchand ◽  
Emma K Anderson ◽  
Magdalena Kamińska ◽  
Nathalie de Ruette ◽  
...  

2020 ◽  
Vol 494 (4) ◽  
pp. 5675-5681 ◽  
Author(s):  
Sanchit Chhabra ◽  
T J Dhilip Kumar

ABSTRACT Molecular ions play an important role in the astrochemistry of interstellar and circumstellar media. C3H+ has been identified in the interstellar medium recently. A new potential energy surface of the C3H+–He van der Waals complex is computed using the ab initio explicitly correlated coupled cluster with the single, double and perturbative triple excitation [CCSD(T)-F12] method and the augmented correlation consistent polarized valence triple zeta (aug-cc-pVTZ) basis set. The potential presents a well of 174.6 cm−1 in linear geometry towards the H end. Calculations of pure rotational excitation cross-sections of C3H+ by He are carried out using the exact quantum mechanical close-coupling approach. Cross-sections for transitions among the rotational levels of C3H+ are computed for energies up to 600 cm−1. The cross-sections are used to obtain the collisional rate coefficients for temperatures T ≤ 100 K. Along with laboratory experiments, the results obtained in this work may be very useful for astrophysical applications to understand hydrocarbon chemistry.


2020 ◽  
Vol 1412 ◽  
pp. 062006
Author(s):  
H T Schmidt ◽  
S Rosén ◽  
R D Thomas ◽  
M H Stockett ◽  
W D Geppert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document