Isolation and characterization of SRF accessory proteins

1993 ◽  
Vol 340 (1293) ◽  
pp. 325-332 ◽  

Many genes which are regulated by growth factors contain a common regulatory element, the serum response element (SRE). Activation of transcription by the SRE involves a ternary complex formed between a ubiquitous factor, serum response factor (SRF), and a second protein, p62/TCF. We used a yeast genetic screen to isolate cDNAs encoding a protein, SAP-1, with the DNA binding properties of p62/TCF. The SAP-1 sequence contains three regions of homology to the previously uncharacterized Elk-1 protein, which also acts as an SRF accessory protein. Only two of these regions are required for cooperative interactions with SRF in the ternary complex. The third contains several conserved sites for the MAP kinases, whose activity is regulated in response to growth factor stimulation. We discuss the potential role of these proteins in regulation of the c-fos SRE.

2021 ◽  
Vol 8 (5) ◽  
pp. 58
Author(s):  
Hazel Aberdeen ◽  
Kaela Battles ◽  
Ariana Taylor ◽  
Jeranae Garner-Donald ◽  
Ana Davis-Wilson ◽  
...  

The fastest growing demographic in the U.S. at the present time is those aged 65 years and older. Accompanying advancing age are a myriad of physiological changes in which reserve capacity is diminished and homeostatic control attenuates. One facet of homeostatic control lost with advancing age is glucose tolerance. Nowhere is this more accentuated than in the high proportion of older Americans who are diabetic. Coupled with advancing age, diabetes predisposes affected subjects to the onset and progression of cardiovascular disease (CVD). In the treatment of type 2 diabetes, hypoglycemic episodes are a frequent clinical manifestation, which often result in more severe pathological outcomes compared to those observed in cases of insulin resistance, including premature appearance of biomarkers of senescence. Unfortunately, molecular mechanisms of hypoglycemia remain unclear and the subject of much debate. In this review, the molecular basis of the aging vasculature (endothelium) and how glycemic flux drives the appearance of cardiovascular lesions and injury are discussed. Further, we review the potential role of the serum response factor (SRF) in driving glycemic flux-related cellular signaling through its association with various proteins.


2009 ◽  
Vol 41 (3) ◽  
pp. 332-338 ◽  
Author(s):  
Nathan Sandbo ◽  
Steven Kregel ◽  
Sebastien Taurin ◽  
Sangeeta Bhorade ◽  
Nickolai O. Dulin

1992 ◽  
Vol 12 (9) ◽  
pp. 4209-4214
Author(s):  
A Gualberto ◽  
D LePage ◽  
G Pons ◽  
S L Mader ◽  
K Park ◽  
...  

The rapid, transient induction of the c-fos proto-oncogene by serum growth factors is mediated by the serum response element (SRE). The SRE shares homology with the muscle regulatory element (MRE) of the skeletal alpha-actin promoter. It is not known how these elements respond to proliferative and cell-type-specific signals, but the response appears to involve the binding of the serum response factor (SRF) and other proteins. Here, we report that YY1, a multifunctional transcription factor, binds to SRE and MRE sequences in vitro. The methylation interference footprint of YY1 overlaps with that of the SRF, and YY1 competes with the SRF for binding to these DNA elements. Overexpression of YY1 repressed serum-inducible and basal expression from the c-fos promoter and repressed basal expression from the skeletal alpha-actin promoter. YY1 also repressed expression from the individual SRE and MRE sequences upstream from a TATA element. Unlike that of YY1, SRF overexpression alone did not influence the transcriptional activity of the target sequence, but SRF overexpression could reverse YY1-mediated trans repression. These data suggest that YY1 and the SRF have antagonistic functions in vivo.


1978 ◽  
Vol 32 (1) ◽  
pp. 337-356
Author(s):  
M.E. Callow ◽  
S.J. Coughlan ◽  
L.V. Evans

The cell wall of 24-h zygotes of Fucus serratus is composed of 3 layers—an inner fibrillar layer (sulphated fucan), an outer fibrillar layer (alginic aicd/cellulose) and an exterior amorphous layer (sulphated fucan, alginic acid). The 2 layers containing sulphated fucan are preferentially thickened at the rhizoid pole. Light- and electron-microscope autoradiographic pulse-chase experiments on 22-h zygotes using 35SO2-(4) show the Golgi bodies to be the sites of fucan sulphation. The isolation and characterization of isolated Golgi-rich fractions from 22-h zygotes shows that the first detectable labelled macromolecule is associated with these fractions 2 min after addition of 35SO2-(4). The sulphate acceptor molecule has been partially characterized. 35S-APS and 35S-paps are detectable in the soluble fraction 0.5 min after addition of 35SO2-(4). The results are discussed in relation to other published work on the differentiation of Fucus embryos and on polysaccharide sulphation.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 425 ◽  
Author(s):  
Yue Fei ◽  
Zhi-Xiong Liu

Cymbidium faberi Rolfe is a very popular potted plant in China, Japan and Korea where it has been cultivated for centuries. The economic value of this popular native Asian orchid could be enhanced by changes in its floral traits. In Arabidopsis, PISTILLATA (PI) is involved in regulating petal and stamen development. In order to investigate the possible role of the PI ortholog involved in floral development, we isolated CyfaPI from C. faberi. Protein alignment and a phylogenetic tree grouped CyfaPI in the PI lineage. CyfaPI transcripts were detected in all floral organs, but were absent in leaves. Moreover, in flowers, the highest expression level of CyfaPI was present in the gynostemium and the lowest level was found in anther caps. In addition, ectopic expression of CyfaPI in Arabidopsis pi-1 mutant rescued petal development, and complement the development of filament-like structure (part of stamen), but failed to complement anther development in the stamen whorl. All these finding suggest that CyfaPI is mainly responsible for perianth and gynostemium development in C. faberi. Our data may help to trace the development of the gynostemium program and evolution in orchids.


Sign in / Sign up

Export Citation Format

Share Document