scholarly journals An approach to separating the levels of hierarchical structure building in language and mathematics

2012 ◽  
Vol 367 (1598) ◽  
pp. 2033-2045 ◽  
Author(s):  
Michiru Makuuchi ◽  
Jörg Bahlmann ◽  
Angela D. Friederici

We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely ‘first-level’ (the build-up of hierarchical structure with externally given elements) and ‘second-level’ (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.

2011 ◽  
Vol 23 (7) ◽  
pp. 1664-1680 ◽  
Author(s):  
Corianne Rogalsky ◽  
Gregory Hickok

The role of Broca's area in sentence processing has been debated for the last 30 years. A central and still unresolved issue is whether Broca's area plays a specific role in some aspect of syntactic processing (e.g., syntactic movement, hierarchical structure building) or whether it serves a more general function on which sentence processing relies (e.g., working memory). This review examines the functional organization of Broca's area in regard to its contributions to sentence comprehension, verbal working memory, and other multimodal cognitive processes. We suggest that the data are consistent with the view that at least a portion of the contribution of Broca's area to sentence comprehension can be attributed to its role as a phonological short-term memory resource. Furthermore, our review leads us to conclude that there is no compelling evidence that there are sentence-specific processing regions within Broca's area.


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


2020 ◽  
Vol 146 (7) ◽  
pp. 595-634 ◽  
Author(s):  
Peng Peng ◽  
Xin Lin ◽  
Zehra Emine Ünal ◽  
Kejin Lee ◽  
Jessica Namkung ◽  
...  

Author(s):  
Alberto Quílez-Robres ◽  
Nieves Moyano ◽  
Alejandra Cortés-Pascual

Academic achievement has been linked to executive functions. However, it is necessary to clarify the different predictive role that executive functions have on general and specific academic achievement and to determine the most predictive executive factor of this academic achievement. The relationship and predictive role between executive functions and their components (initiative, working memory, task monitoring, organization of materials, flexibility, emotional control, inhibition, self-monitoring) with academic achievement are analyzed in this study, both globally and specifically in the areas of Language Arts and Mathematics, in 133 students from 6 to 9 years of age. The relationship obtained in Pearson’s correlation analysis does not differ substantially between overall achievement (r = 0.392) and specific achievement (r = 0.361, r = 0.361), but task monitoring (r = 0.531, r = 0.455, r = 0.446) and working memory (r = 0.512, r = 0.475, r = 0.505) had a greater relationship with general and specific achievement. Finally, regression analyses based on correlation results indicate that executive functions predict general academic performance (14.7%) and specific performance (12.3%, 12.2%) for Language Arts and Mathematics, respectively. Furthermore, working memory and task supervision represent 32.5% of general academic performance, 25.5% of performance in Language Arts, and 27.1% of performance in Mathematics. In conclusion, this study yielded exploratory data on the possible executive functions (task supervision and working memory) responsible for good general academic achievements and specific academic achievements in Mathematics and Language Arts.


Primates ◽  
2021 ◽  
Author(s):  
Rie Asano

AbstractA central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music.


1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


Sign in / Sign up

Export Citation Format

Share Document