scholarly journals How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex

2014 ◽  
Vol 369 (1633) ◽  
pp. 20130284 ◽  
Author(s):  
Sam F. Cooke ◽  
Mark F. Bear

Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.

2007 ◽  
Vol 14 (9) ◽  
pp. 573-580 ◽  
Author(s):  
Q. S. Fischer ◽  
S. Aleem ◽  
H. Zhou ◽  
T. A. Pham

1994 ◽  
Vol 6 (4) ◽  
pp. 615-621 ◽  
Author(s):  
Geoffrey J. Goodhill ◽  
David J. Willshaw

The elastic net (Durbin and Willshaw 1987) can account for the development of both topography and ocular dominance in the mapping from the lateral geniculate nucleus to primary visual cortex (Goodhill and Willshaw 1990). Here it is further shown for this model that (1) the overall pattern of stripes produced is strongly influenced by the shape of the cortex: in particular, stripes with a global order similar to that seen biologically can be produced under appropriate conditions, and (2) the observed changes in stripe width associated with monocular deprivation are reproduced in the model.


2015 ◽  
Vol 10 (10) ◽  
pp. 1622 ◽  
Author(s):  
Wen-sheng Hou ◽  
Bing-bing Guo ◽  
Xiao-lin Zheng ◽  
Zhen-gang Lu ◽  
Xing Wang ◽  
...  

2018 ◽  
Vol 35 ◽  
Author(s):  
TAKAO K. HENSCH ◽  
ELIZABETH M. QUINLAN

AbstractThe shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular ‘brakes’. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.


2008 ◽  
Vol 100 (3) ◽  
pp. 1476-1487 ◽  
Author(s):  
Bin Zhang ◽  
Earl L. Smith ◽  
Yuzo M. Chino

Vision of newborn infants is limited by immaturities in their visual brain. In adult primates, the transient onset discharges of visual cortical neurons are thought to be intimately involved with capturing the rapid succession of brief images in visual scenes. Here we sought to determine the responsiveness and quality of transient responses in individual neurons of the primary visual cortex (V1) and visual area 2 (V2) of infant monkeys. We show that the transient component of neuronal firing to 640-ms stationary gratings was as robust and as reliable as in adults only 2 wk after birth, whereas the sustained component was more sluggish in infants than in adults. Thus the cortical circuitry supporting onset transient responses is functionally mature near birth, and our findings predict that neonates, known for their “impoverished vision,” are capable of initiating relatively mature fixating eye movements and of performing in detection of simple objects far better than traditionally thought.


2004 ◽  
Vol 92 (5) ◽  
pp. 2947-2959 ◽  
Author(s):  
Miguel Á. Carreira-Perpiñán ◽  
Geoffrey J. Goodhill

Maps of ocular dominance and orientation in primary visual cortex have a highly characteristic structure. The factors that determine this structure are still largely unknown. In particular, it is unclear how short-range excitatory and inhibitory connections between nearby neurons influence structure both within and between maps. Using a generalized version of a well-known computational model of visual cortical map development, we show that the number of excitatory and inhibitory oscillations in this interaction function critically influences map structure. Specifically, we demonstrate that functions that oscillate more than once do not produce maps closely resembling those seen biologically. This strongly suggests that local lateral connections in visual cortex oscillate only once and have the form of a Mexican hat.


1994 ◽  
Vol 34 (6) ◽  
pp. 709-720 ◽  
Author(s):  
Michela Fagiolini ◽  
Tommaso Pizzorusso ◽  
Nicoletta Berardi ◽  
Luciano Domenici ◽  
Lamberto Maffei

Science ◽  
2019 ◽  
Vol 363 (6422) ◽  
pp. 64-69 ◽  
Author(s):  
Riccardo Beltramo ◽  
Massimo Scanziani

Visual responses in the cerebral cortex are believed to rely on the geniculate input to the primary visual cortex (V1). Indeed, V1 lesions substantially reduce visual responses throughout the cortex. Visual information enters the cortex also through the superior colliculus (SC), but the function of this input on visual responses in the cortex is less clear. SC lesions affect cortical visual responses less than V1 lesions, and no visual cortical area appears to entirely rely on SC inputs. We show that visual responses in a mouse lateral visual cortical area called the postrhinal cortex are independent of V1 and are abolished upon silencing of the SC. This area outperforms V1 in discriminating moving objects. We thus identify a collicular primary visual cortex that is independent of the geniculo-cortical pathway and is capable of motion discrimination.


Sign in / Sign up

Export Citation Format

Share Document