scholarly journals How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex

2014 ◽  
Vol 369 (1639) ◽  
pp. 20140021 ◽  
Author(s):  
Sam F. Cooke ◽  
Mark F. Bear
2014 ◽  
Vol 369 (1633) ◽  
pp. 20130284 ◽  
Author(s):  
Sam F. Cooke ◽  
Mark F. Bear

Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.


2006 ◽  
Vol 1103 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Hyun-Sok Kim ◽  
Hyun-Jong Jang ◽  
Kwang-Hyun Cho ◽  
Sang June Hahn ◽  
Myung-Jun Kim ◽  
...  

2009 ◽  
Vol 101 (1) ◽  
pp. 269-275 ◽  
Author(s):  
Hyun-Jong Jang ◽  
Kwang-Hyun Cho ◽  
Hyun-Sok Kim ◽  
Sang June Hahn ◽  
Myung-Suk Kim ◽  
...  

Supragranular long-term potentiation (LTP) and depression (LTD) are continuously induced in the pathway from layer 4 during the critical period in the rodent primary visual cortex, which limits the use of supragranular long-term synaptic plasticity as a synaptic model for the mechanism of ocular dominance (OD) plasticity. The results of the present study demonstrate that the pulse duration of extracellular stimulation to evoke a field potential (FP) is critical to induction of LTP and LTD in this pathway. LTP and LTD were induced in the pathway from layer 4 to layer 2/3 in slices from 3-wk-old rats when FPs were evoked by 0.1- and 0.2-ms pulses. LTP and LTD were induced in slices from 5-wk-old rats when evoked by stimulation with a 0.2-ms pulse but not by stimulation with a 0.1-ms pulse. Both the inhibitory component of FP and the inhibitory/excitatory postsynaptic potential amplitude ratio evoked by stimulation with a 0.1-ms pulse were greater than the values elicited by a 0.2-ms pulse. Stimulation with a 0.1-ms pulse at various intensities that showed the similar inhibitory FP component with the 0.2-ms pulse induced both LTD and LTP in 5-wk-old rats. Thus extracellular stimulation with shorter-duration pulses at higher intensity resulted in greater inhibition than that observed with longer-duration pulses at low intensity. This increased inhibition might be involved in the age-dependent decline of synaptic plasticity during the critical period. These results provide an alternative synaptic model for the mechanism of OD plasticity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Priscilla Hirst ◽  
Pasha Javadi Khomami ◽  
Amol Gharat ◽  
Shahin Zangenehpour

Recent studies suggest that exposure to only one component of audiovisual events can lead to cross-modal cortical activation. However, it is not certain whether such crossmodal recruitment can occur in the absence of explicit conditioning, semantic factors, or long-term associations. A recent study demonstrated that crossmodal cortical recruitment can occur even after a brief exposure to bimodal stimuli without semantic association. In addition, the authors showed that the primary visual cortex is under such crossmodal influence. In the present study, we used molecular activity mapping of the immediate early gene zif268. We found that animals, which had previously been exposed to a combination of auditory and visual stimuli, showed increased number of active neurons in the primary visual cortex when presented with sounds alone. As previously implied, this crossmodal activation appears to be the result of implicit associations of the two stimuli, likely driven by their spatiotemporal characteristics; it was observed after a relatively short period of exposure (~45 min) and lasted for a relatively long period after the initial exposure (~1 day). These results suggest that the previously reported findings may be directly rooted in the increased activity of the neurons occupying the primary visual cortex.


Sign in / Sign up

Export Citation Format

Share Document