scholarly journals The role of polymers in cross-kingdom bioadhesion

2019 ◽  
Vol 374 (1784) ◽  
pp. 20190192 ◽  
Author(s):  
A. L. Morales-García ◽  
R. G. Bailey ◽  
S. Jana ◽  
J. G. Burgess

The secretion of extracellular polymeric substances provides an evolutionary advantage found in many organisms that can adhere to surfaces and cover themselves in a protective matrix. This ability is found in prokaryotes, archaea and eukaryotes, all of which use functionally similar polysaccharides, proteins and nucleic acids to form extracellular matrices, mucus and bioadhesive substances. These macromolecules have been investigated from the perspective of polymer biophysics, and theories to help understand adhesion, viscosity and gelling have been developed. These properties can be measured experimentally using straightforward methods such as cell counting as well as more advanced techniques such as atomic force microscopy and rheometry. An integrated understanding of the properties and uses of adhesive macromolecules across kingdoms is also important and can provide the basis for a range of biotechnological and medical applications. This article is part of the theme issue ‘Transdisciplinary approaches to the study of adhesion and adhesives in biological systems’.

Wear ◽  
2019 ◽  
Vol 418-419 ◽  
pp. 151-159 ◽  
Author(s):  
Juan F. Gonzalez-Martinez ◽  
Erum Kakar ◽  
Stefan Erkselius ◽  
Nicola Rehnberg ◽  
Javier Sotres

Nanoscale ◽  
2017 ◽  
Vol 9 (36) ◽  
pp. 13707-13716 ◽  
Author(s):  
Anna D. Protopopova ◽  
Rustem I. Litvinov ◽  
Dennis K. Galanakis ◽  
Chandrasekaran Nagaswami ◽  
Nikolay A. Barinov ◽  
...  

High-resolution atomic force microscopy imaging reveals the role of fibrinogen αC regions in the early stages of fibrin self-assembly.


2011 ◽  
Vol 3 (6) ◽  
pp. 702-716 ◽  
Author(s):  
Srinivasan Ramachandran ◽  
Fernando Teran Arce ◽  
Ratnesh Lal

Sign in / Sign up

Export Citation Format

Share Document