scratch resistance
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 122)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 163 ◽  
pp. 106668
Author(s):  
José M. Cuevas ◽  
Rubén Cobos ◽  
Lorena Germán ◽  
Borja Sierra ◽  
José M. Laza ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Rosaria Ciriminna ◽  
Cristina Scolaro ◽  
Antonino Scurria ◽  
Silvia Sfameni ◽  
Gabriella Di Carlo ◽  
...  

The outcomes of adhesion and ecotoxicity tests carried out on metal specimens faithfully representing the surface of real ships, including the primer and tie coat layers typically applied on ship hull prior to deposition of the antifouling paint, show the practical applicability of "AquaSun" antifouling sol-gel coatings. Newly developed AquaSun coatings share superhydrophicity (contact angle >115) and exceptionally high scratch resistance (ASTM 5B). Coupled to the ecofriendly antifouling mechanism based on continuous H2O2 formation upon exposure to solar light and foul release due to low surface energy, these results open the route to the practical utilization of these novel marine coatings.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 73
Author(s):  
Tobias Bubmann ◽  
Andreas Seidel ◽  
Holger Ruckdäschel ◽  
Volker Altstädt

Reactive compounding of terminally phenolic OH-functionalized polycarbonate (PC) with epoxy-functionalized polymethylmethacrylate (PMMA) prepared by copolymerization with glycidyl methacrylate was investigated. It was spectroscopically demonstrated that a PC/PMMA copolymer was formed during the melt reaction of the functional groups. Zirconium acetylacetonate could catalytically accelerate this reaction. Correlations of the phenomenological (optical and mechanical) properties with the molecular level and mesoscopic (morphological) structure were discussed. By the investigated reactive compounding process, transparent PC/PMMA blends with two-phase morphologies were obtained in a continuous twin-screw extruder, which, for the first time, combined the high transmission of visible light with excellent mechanical performance (e.g., synergistically improved tensile and flexural strength and high scratch resistance). The transparency strongly depended on (a) the degree of functionalization in both PC and PMMA, (b) the presence of the catalyst, and (c) the residence time of the compounding process. The in-situ-formed PC/PMMA copolymer influenced the observed macroscopic properties by (a) a decrease in the interphase tension, leading to improved and stabilized phase dispersion, (b) the formation of a continuous gradient of the polymer composition and thus of the optical refractive indices in a diffuse mesoscopic interphase layer separating the PC and PMMA phases, and (c) an increase in the phase adhesion between PC and PMMA due to mechanical polymer chain entanglement in this interphase.


2021 ◽  
Author(s):  
Antonino Scurria ◽  
Silvia Sfameni ◽  
Gabriella Di Carlo ◽  
Mario Pagliaro ◽  
Anna Maria Visco ◽  
...  

The outcomes of adhesion and ecotoxicity tests carried out on metal specimens faithfully representing the surface of real ships, including the primer and tie coat layers typically applied on ship hull prior to deposition of the antifouling paint, show the practical applicability of "AquaSun" antifouling sol-gel coatings. Newly developed AquaSun coatings share superhydrophicity (contact angle >115) and exceptionally high scratch resistance (ASTM 5B). Coupled to the ecofriendly antifouling mechanism based on continuous H2O2 formation upon exposure to solar light and foul release due to low surface energy, these results open the route to the practical utilization of these novel marine coatings.


Author(s):  
Gaoyuan Zhang ◽  
Christian Schmitz ◽  
Matthias Fimmers ◽  
Christoph Quix ◽  
Sayed Hoseini

AbstractA manual scratch test to measure the scratch resistance of coatings applied to a certain substrate is usually used to test the adhesion of a coating. Despite its significant amount of subjectivity, the crosscut test is widely considered to be the most practical measuring method for adhesion strength with a good reliability. Intelligent software tools help to improve and optimize systems combining chemistry, engineering based on high-throughput formulation screening (HTFS) technologies and machine learning algorithms to open up novel solutions in material sciences. Nevertheless, automated testing often misses the link to quality control by the human eye that is sensitive in spotting and evaluating defects as it is the case in the crosscut test. In this paper, we present a method for the automated and objective characterization of coatings to drive and support Chemistry 4.0 solutions via semantic image segmentation using deep convolutional networks. The algorithm evaluated the adhesion strength based on the images of the crosscuts recognizing the delaminated area and the results were compared with the traditional classification rated by the human expert.


Author(s):  
Avinash V Borgaonkar ◽  
Ismail Syed ◽  
Shirish H Sonawane

Molybdenum disulphide (MoS2) is a popularly used solid lubricant in various applications due to its superior tribological behaviour. However, it possesses poor wear resistance which requires further improvement. In the present study efforts have been made to enhance the tribological properties of pure MoS2 coating film by doping TiO2 nanoparticles as a reinforcement material. The Manganese phosphating is selected as a pre-treatment method to improve the bond strength between coating and substrate. The coating is bonded with the substrate material employing sodium silicate as a binder. The effects of wt. % of TiO2 onto the mechanical properties of composite MoS2-TiO2 coating such as hardness and bond strength have been studied. In addition coating microstructure before and after experimental test was studied using optical microscope and scanning electron microscope. It was also found that with increase in wt. % addition of TiO2 upto 15% into MoS2 base matrix, the hardness of coating increases proportionally. Beyond 15 wt. % addition of TiO2, the coating becomes brittle in nature. This leads to reduction in the scratch resistance.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1424
Author(s):  
Mariola Robakowska ◽  
Łukasz Gierz ◽  
Hubert Gojzewski

This article describes the modification of UV-curable coatings with silicon aluminum oxynitride (Sialon) and aluminum oxide (Alu C), which improve the hydrophobicity of the coating surface and the scratch hardness. The contact angle is greater due to surface roughness being enhanced with inorganic fillers. Improved scratch resistance results from the formation of a sliding layer triggered by the diffusion of Sialon or alumina on the coating surface. One can observed an increase in the surface hydrophobicity as well as in the scratch hardness (up to 100%) when small amounts (5 wt.%) of the inorganic compounds are added. Imaging microscopies, i.e., SEM, OM, and AFM (with nanoscopic Young’s modulus determination), revealed the good distribution of both types of fillers in the studied matrix.


Author(s):  
Wei Zhou ◽  
Hong-bin Wang ◽  
Quan Wang ◽  
Qing-hui Huo

Sign in / Sign up

Export Citation Format

Share Document