scholarly journals Ethanol Production from Various Sugars by Strains of Pachysolen tannophilus Bearing Different Numbers of Chromosomes

Microbiology ◽  
1983 ◽  
Vol 129 (8) ◽  
pp. 2495-2500 ◽  
Author(s):  
R. Maleszka ◽  
A. P. James ◽  
H. Schneider
1990 ◽  
Vol 55 (3) ◽  
pp. 854-866 ◽  
Author(s):  
Rodríguez V. Bravo ◽  
Rubio F. Camacho ◽  
Villasclaras S. Sánchez ◽  
Vico M. Castro

The ethanolic fermentation in batch cultures of Pachysolen tannophilus was studied experimentally varying the initial concentrations of two of the components in the culture medium: glucose between 0 and 200 g l-1 and yeast extract between 0 and 8 g l-1. The yeast extract appears to be a significant component both in cell growth and for ethanol production.


2013 ◽  
Vol 781-784 ◽  
pp. 847-851
Author(s):  
Jin Ling Guo ◽  
Da Chun Gong ◽  
Zhi Jun Li ◽  
Zhou Zheng

Saccharomyces cerevisiae R40 and Pachysolen tannophilus P01 were used as the parental strain to construct an engineering strain capable of co-fermenting pentose and hexose by protoplast fusion. A fusant F202 was obtained through inactivating parental protoplasts, screening with YPX solid medium and high glucose liquid medium, ethanol production capacity detecting and identification with PCR-SSR technique. Subsequently, the fermentation performance and genetic stability of F202 was studied. The maximum ethanol production capacity from glucose was 1.47 ml/100 ml with a sugar and alcohol conversion rate 47% which was 11% higher than the parental strain P01. By fermenting xylose the ethanol concentration could achieve to 0.58 ml/100 ml with a sugar and alcohol conversion rate 12%. An ethanol concentration of 1.2 ml/100 ml was obtained by fermenting the mixture of xylose and glucose (mass ratio 1:2). Moreover, no decrease in ethanol yield after 8 generations propagation suggested fustant 202 possessed good genetic stability.


2021 ◽  
Author(s):  
Marcello Lima Bertuci ◽  
Mariane Daniella da Silva ◽  
João Pedro Cano ◽  
Crispin Humberto Garcia Cruz

Abstract The production of an alternative form of fuel that replaces fossil fuels has been increasingly studied due to the environmental impacts generated by its excessive use, as well as the depletion of these fossil energy sources. Ethanol obtained from the crushing of sugar cane has been used as a substitute for these fuels, mainly in the automotive area. However, alternative sources are being studied to produce the so called second generation bioethanol. This would avoid competition for food producing agricultural areas and agroindustrial waste is a great source for obtaining it. In general, these residues are not always completely reused and are disposed of inappropriately in the environment, becoming contaminants. Therefore, the use of agroindustrial waste can become a renewable source of energy, in addition to reducing environmental impacts. The objective of this work is to produce second generation bioethanol as an alternative to the one currently used, using the rice husk hydrolyzate by the consortium formed by Saccharomyces cerevisiae and Pachysolen tannophilus . For this, an acid hydrolysis was performed with 2% sulfuric acid during 10 minutes of heating in an autoclave, after which the hydrolyzate was detoxified with the use of activated carbon. The crude and detoxified hydrolysates were used as a substrate for the fermentation medium with an initial concentration of 50 mg/mL of reducing sugars. The fermentation process with the use of both yeasts in the crude hydrolyzate medium, in the detoxified medium and in a synthetic medium composed of glucose, was carried out for 24 h, 30º C, 0 rpm and pH 6.5.The best results for the ethanol production of Saccharomyces cerevisiae was the synthetic medium with 20.6 mg/mL. For the yeast Pachysolen tannophilus , its highest production was in a synthetic medium with 11.67 mg/mL. The intercropping of the two yeasts proved to be efficient with a greater ethanol production reaching 21.5 mg/mL, the hydrolyzed and detoxified media showed great potential for ethanol production both in intercropping and in monoculture


1982 ◽  
Vol 4 (5) ◽  
pp. 349-352 ◽  
Author(s):  
R. Maleszka ◽  
P.Y. Wang ◽  
Henry Schneider

Sign in / Sign up

Export Citation Format

Share Document