scholarly journals Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2968-2974 ◽  
Author(s):  
Raquel M. Cadete ◽  
Monaliza A. M. Cheab ◽  
Renata O. Santos ◽  
Silvana V. B. Safar ◽  
Jerri E. Zilli ◽  
...  

Independent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene showed that this species is related to C. japonica, C. maesa and C. easanensis. Six isolates were obtained from different sources, including rotting wood, tree bark and sugar cane filter cake in Brazil, frass from white oak in the USA and decayed leaf in Taiwan. A novel species is suggested to accommodate these isolates, for which the name C. xylosilytica sp. nov. is proposed. The type strain of C. xylosilytica sp. nov. is NRRL YB-2097T ( = CBS 13984T = UFMG-CM-Y347T) and the allotype is UFMG-CM-Y409 ( = CBS 14083). The novel species is heterothallic and complementary mating types are represented by the type and allotype strains. The MycoBank number is MB 811428.

2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4469-4473 ◽  
Author(s):  
Mariana R. Lopes ◽  
Mariana C. Ferreira ◽  
Tatiana F. C. Carvalho ◽  
Fernando C. Pagnocca ◽  
Rafaella A. Chagas ◽  
...  

Nine strains of a novel yeast species were isolated from rotting wood, tree bark, ant nests or living as endophytes in leaves of Vellozia gigantea. Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene showed that this species was related to Candida insectorum in the Yamadazyma clade. The novel species differed from closely related species by 10 and 11 substitutions in the ITS region and the D1/D2 domains of the large subunit of the rRNA gene, respectively. The species is heterothallic and forms asci with one to two hat-shaped ascospores. The name Yamadazyma riverae sp. nov. is proposed for the novel species. The type strain is UFMG-CM-Y444T ( = CBS 14121T) and the allotype strain is TT12 ( = CBS 14098 = UFMG-CM-Y577). The Mycobank number is MB 813221.


2020 ◽  
Vol 70 (4) ◽  
pp. 2677-2681
Author(s):  
Juliana D. Moreira ◽  
Ana Raquel O. Santos ◽  
Fernanda L. C. Oliveira ◽  
Raquel M. Cadete ◽  
Ana Luiza Freire ◽  
...  

Six strains of a novel yeast species were isolated from tree bark collected in the Atlantic Forest and the Amazon Rainforest in Brazil. Analyses of the sequences of D1/D2 domains of the large subunit rRNA gene showed that the strains belong to a species in the genus Zygotorulaspora. The species differed by 5.54 % sequence divergence (25 substitutions and five indels out of 542 bp) in the D1/D2 sequences from Zygotorulaspora mrakii, its closest relative. The ITS sequence of the type strain of the novel species differs by 27–69 nucleotide substitutions/indels from the other Zygotorulaspora species. The novel species is able to grow on trehalose, maltose, l-sorbose, inulin and at 37 °C, which are negative in Z. mrakii. The name Zygotorulaspora cariocana sp. nov. is proposed. The holotype of Z. cariocana sp. nov. is CBS 16118T. The MycoBank number is MB 833702.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4818-4823 ◽  
Author(s):  
Edina Nagy ◽  
Marete Niss ◽  
Dénes Dlauchy ◽  
Nils Arneborg ◽  
Dennis Sandris Nielsen ◽  
...  

Five yeast strains, phenotypically indistinguishable from Yarrowia lipolytica and Yarrowia deformans, were recovered from different animal-related samples. One strain was isolated from a bacon processing plant in Denmark, two strains from chicken liver in the USA, one strain from chicken breast in Hungary and one from minced beef in Hungary. Comparisons of the sequences of their large subunit rRNA gene D1/D2 domain and the internal transcribed spacer (ITS) regions revealed that, despite their phenotypic similarity, they represent a novel yeast species of the Yarrowia clade with Y. deformans being the genotypically closest relative (LSU rRNA gene D1/D2 and ITS region similarity of 97.0 and 93.7 %, respectively). Yarrowia divulgata f.a., sp. nov. is proposed to accommodate these strains with F6-17T ( = CBS 11013T = CCUG 56725T) as the type strain. Some D1/D2 sequences of yeasts from marine habitats were found in the GenBank database that were identical to those of the strains of Y. divulgata f.a., sp. nov. Unfortunately, these strains were not available for our study.


Author(s):  
Katharina O. Barros ◽  
Rafael M. Souza ◽  
Fernanda Palladino ◽  
Raquel M. Cadete ◽  
Ana Raquel O. Santos ◽  
...  

Six yeast isolates were obtained from rotting wood samples in Brazil and frass of a cerambycid beetle larva in French Guiana. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of Cyberlindnera. This novel species is related to Cyberlindnera japonica, Cyberlindnera xylosilytica, Candida easanensis and Candida maesa. It is heterothallic and produces asci with two or four hat-shaped ascospores. The name Cyberlindnera dasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Cy. dasilvae is CBS 16129T and the designated paratype is CBS 16584. The MycoBank number is 838252. All isolates of Cy. dasilvae were able to convert xylose into xylitol with maximum xylitol production within 60 and 72 h. The isolates produced xylitol with values ranging from 12.61 to 31.79 g l−1 in yeast extract–peptone–xylose medium with 5% xylose. When the isolates were tested in sugarcane bagasse hydrolysate containing around 35–38 g l−1 d-xylose, isolate UFMG-CM-Y519 showed maximum xylitol production.


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1297-1303 ◽  
Author(s):  
Rungluk Kaewwichian ◽  
Sasitorn Jindamorakot ◽  
Somjit Am-In ◽  
Matthias Sipiczki ◽  
Savitree Limtong

Eight strains, representing two novel anamorphic yeast species, consisted of five strains isolated from the external surfaces of rice leaves (DMKU-RP72T, DMKU-RP109, DMKU-RP119, YE-124 and YE-156) and one from a corn leaf (DMKU-CP430T)4 collected in Thailand, and one strain isolated from each of a composite flower (11-1114) and a fallen dead leaf (12-301); the latter two were collected in Belize. On the basis of sequence analysis of the D1/D2 region of the large subunit rRNA gene and the internal transcribed spacer (ITS) region, they were suggested to be two novel species of the genus Hannaella. Seven strains (DMKU-RP72T, DMKU-RP109, DMKU-RP119, YE-124, YE-156, 11-1114 and 12-301) differed from each other by 0–3 nt substitutions in the D1/D2 region and by 0–1 nt substitutions in the ITS region. In terms of pairwise sequence similarities of the D1/D2 region these seven strains were closest to Hannaella zeae, but with 1.2–1.7 % (7–9) nucleotide substitutions. The sequences of the ITS region of these seven strains differed from H. zeae by 3.7–3.9 % (16–17) nucleotide substitutions. Therefore, they were assigned to a single novel species and the name Hannaella siamensis sp. nov. has been proposed. The type strain is DMKU-RP72T ( = BCC 69493T = NBRC 110425T = CBS 13533T). Strain DMKU-CP430T represents the second novel species and was also most closely related to H. zeae, but with 1.0 % (6) nucleotide substitutions in the D1/D2 region and 3.2 % (14) nucleotide substitutions in the ITS region. It was assigned to the proposed novel species, Hannaella phetchabunensis sp. nov. (type strain DMKU-CP430T = BCC 69492T = NBRC 110424T = CBS 13386T).


2020 ◽  
Vol 70 (7) ◽  
pp. 4378-4383
Author(s):  
Juliana D. Moreira ◽  
Camila G. Morais ◽  
Fernanda L. C. Oliveira ◽  
Ana Raquel O. Santos ◽  
Clemens Schlindwein ◽  
...  

Four isolates of two novel ascosporogenous species belonging to the clade Starmera were obtained from cactus tissues and rotting wood in Brazil. Results of analyses of the sequences of the ITS and D1/D2 domains of the large subunit rRNA gene indicated that the two isolates of the cactophilic species are related to Starmera caribaea and Starmera pilosocereana, yeasts that are associated with cacti and require an organic source of sulfur for growth. We propose the novel species Starmera foglemanii sp. nov. (CBS 16113T; MycoBank number: MB 834400) to accommodate these isolates. The other two isolates are phylogenetically related to Candida dendrica, Candida laemsonensis and Candida berthetii, also in the Starmera clade. The novel species name Starmera ilhagrandensis sp. nov. (CBS 16316T; MycoBank number: MB 834402) is proposed for this species.


2004 ◽  
Vol 54 (5) ◽  
pp. 1891-1894 ◽  
Author(s):  
Solange C. Carreiro ◽  
Fernando C. Pagnocca ◽  
Maurício Bacci ◽  
Marc-André Lachance ◽  
Odair C. Bueno ◽  
...  

Four strains of a novel yeast species were isolated from laboratory nests of the leaf-cutting ant Atta sexdens in Brazil. Three strains were found in older sponges and one was in a waste deposit in the ant nests. Sequencing of the D1/D2 region of the large-subunit rRNA gene showed that the novel species, named Sympodiomyces attinorum sp. nov., is phylogenetically related to Sympodiomyces parvus. Unlike Sympodiomyces parvus, Sympodiomyces attinorum can ferment glucose, assimilate methyl α-d-glucoside, salicin and citrate, and grow at 37 °C, thus enabling these two species to be distinguished. Differentiation from other related species is possible on the basis of other growth characteristics. The type strain of Sympodiomyces attinorum is UNESP-S156T (=CBS 9734T=NRRL Y-27639T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1855-1859 ◽  
Author(s):  
Ana Raquel O. Santos ◽  
Elisa S. Faria ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Five strains of a novel methanol-assimilating yeast species were isolated from mango (Mangifera indica) leaves collected at the campus of the Federal University of Minas Gerais in Brazil. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Ogataea clade and is related to O. allantospora, O. chonburiensis, O. dorogensis, O. kodamae, O. paradorogensis and Candida xyloterini (Ogataea clade). The novel species differs in the D1/D2 domains of the large subunit of the rRNA gene by 12 to 40 substitutions from these Ogataea species. The name Ogataea mangiferae sp. nov. is proposed for this novel species. The type strain of Ogataea mangiferae sp. nov. is UFMG-CM-Y253T ( = CBS 13492T). The Mycobank number is MB 811646.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1438-1440 ◽  
Author(s):  
Raquel M. Cadete ◽  
Monaliza A. Melo ◽  
Mariana R. Lopes ◽  
Gilmara M. D. Pereira ◽  
Jerri E. Zilli ◽  
...  

Five strains of a novel yeast species were isolated from rotting wood samples collected in an Amazonian forest site in the state of Roraima, northern Brazil. The sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Scheffersomyces clade and is related to Candida coipomoensis, Candida lignicola and Candida queiroziae. The novel species Candida amazonensis sp. nov. is proposed to accommodate these isolates. The type strain of C. amazonensis sp. nov. is UFMG-HMD-26.3T ( = CBS 12363T = NRRL Y-48762T).


2011 ◽  
Vol 61 (2) ◽  
pp. 454-461 ◽  
Author(s):  
Somjit Am-In ◽  
Savitree Limtong ◽  
Wichien Yongmanitchai ◽  
Sasitorn Jindamorakot

Five strains (RV5T, RV140, R31T, RS17 and RS28T) representing three novel anamorphic ascomycetous yeast species were isolated by membrane filtration from estuarine waters collected from a mangrove forest in Laem Son National Park, Ranong Province, Thailand, on different occasions. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and the internal transcribed spacer region and phylogenetic analysis, three strains were found to represent two novel Candida species. Two strains (RV5T and RV140) represented a single novel species, for which the name Candida laemsonensis sp. nov. is proposed. The type strain is RV5T (=BCC 35154T =NBRC 105873T =CBS 11419T). Strain R31T was assigned to a novel species that was named Candida andamanensis sp. nov. (type strain R31T =BCC 25965T =NBRC 103862T =CBS 10859T). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and phylogenetic analysis, strains RS17 and RS28T represented another novel species of Candida, for which the name Candida ranongensis sp. nov. is proposed. The type strain is RS28T (=BCC 25964T =NBRC 103861T =CBS 10861T).


Sign in / Sign up

Export Citation Format

Share Document