marine habitats
Recently Published Documents


TOTAL DOCUMENTS

812
(FIVE YEARS 316)

H-INDEX

58
(FIVE YEARS 10)

2022 ◽  
Vol 217 ◽  
pp. 106017
Author(s):  
Charalampos Dimitriadis ◽  
Antonios D. Mazaris ◽  
Stelios Katsanevakis ◽  
Andreas Iosifakis ◽  
Efthimios Spinos ◽  
...  

Author(s):  
Renu Saharan ◽  
Suresh Kumar ◽  
Sukhbir Lal Khokra ◽  
Sunil Singh ◽  
Abhishek Tiwari ◽  
...  

Abstract: Cyclic peptides have emerged as a promising class of organic compounds that possess polypeptide chains with a cyclic ring structure. There is a circular sequence of bonds in which the ring structure is formed via linkage between one end of the peptide bond and the other end with an amide bond or any other chemically stable bonds like ether, thioether, lactone, and disulfide. Generally, the cyclic peptides are isolated from natural resources like invertebrate animals, micro-organisms of marine habitats, and higher plants. These cyclic peptides possess unique structures with diverse pharmacological activities. Now a day, cyclic peptides possess superior therapeutic value due to several reasons such as greater resistance to enzymatic degradation (in vivo) and higher bio-availability. Some of these cyclic peptides are rich in leucine, proline while some have other amino acids as their major constituents. Numerous novel cyclic peptides isolated from natural sources are successfully developed as bioactive products. Recently, cyclic peptides derived from natural resources have attracted attention for exploring their numerous beneficial effects. Moreover, it is reported that natural cyclic peptides exhibit various therapeutic activities like an anthelmintic, ACE inhibitor, anti-tumor, microtubule inhibitor, anti-fungal, anti-malarial, and platelet aggregation inhibiting activity. In this review, various cyclic peptides are reported with structures and biological activities that are isolated from various natural sources. The natural cyclic peptides possess a wide spectrum of biological activities and can become a drug of the future for replacing the existing drugs which develop resistance


2022 ◽  
Author(s):  
Blair P Bentley ◽  
Tomás Carrasco-Valenzuela ◽  
Elisa K. S. Ramos ◽  
Harvinder Pawar ◽  
Larissa Souza Arantes ◽  
...  

Marine turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 MYA, yet the genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remain largely unknown. Additionally, many populations have declined drastically due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for green (Chelonia mydas) and leatherback (Dermochelys coriacea) turtles, representing the two extant marine turtle families (MRCA ~60 MYA). Generally, these genomes are highly syntenic and homologous. Non-collinearity was associated with higher copy numbers of immune, zinc-finger, or olfactory receptor (OR) genes in green turtles. Gene family analyses suggested that ORs related to waterborne odorants have expanded in green turtles and contracted in leatherbacks, which may underlie immunological and sensory adaptations assisting navigation and occupancy of neritic versus pelagic environments, and diet specialization. Microchromosomes showed reduced collinearity, and greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, demographic history and diversity analyses showed stark contrasts between species, indicating that leatherback turtles have had a low yet stable effective population size, extremely low diversity when compared to other reptiles, and a higher proportion of deleterious variants, reinforcing concern over the persistence of this species under future climate scenarios. These highly contiguous genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.


2022 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Lenaïg G. Hemery ◽  
Kailan F. Mackereth ◽  
Levy G. Tugade

Marine energy devices are installed in highly dynamic environments and have the potential to affect the benthic and pelagic habitats around them. Regulatory bodies often require baseline characterization and/or post-installation monitoring to determine whether changes in these habitats are being observed. However, a great diversity of technologies is available for surveying and sampling marine habitats, and selecting the most suitable instrument to identify and measure changes in habitats at marine energy sites can become a daunting task. We conducted a thorough review of journal articles, survey reports, and grey literature to extract information about the technologies used, the data collection and processing methods, and the performance and effectiveness of these instruments. We examined documents related to marine energy development, offshore wind farms, oil and gas offshore sites, and other marine industries around the world over the last 20 years. A total of 120 different technologies were identified across six main habitat categories: seafloor, sediment, infauna, epifauna, pelagic, and biofouling. The technologies were organized into 12 broad technology classes: acoustic, corer, dredge, grab, hook and line, net and trawl, plate, remote sensing, scrape samples, trap, visual, and others. Visual was the most common and the most diverse technology class, with applications across all six habitat categories. Technologies and sampling methods that are designed for working efficiently in energetic environments have greater success at marine energy sites. In addition, sampling designs and statistical analyses should be carefully thought through to identify differences in faunal assemblages and spatiotemporal changes in habitats.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 53
Author(s):  
Laura Llorach-Pares ◽  
Alfons Nonell-Canals ◽  
Conxita Avila ◽  
Melchor Sanchez-Martinez

Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet’s biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies.


2022 ◽  
pp. 263498172110670
Author(s):  
Graham Epstein ◽  
Steven M Alexander ◽  
Melissa Marschke ◽  
Donovan Campbell ◽  
Derek Armitage

Alternative livelihood programs are a central feature of contemporary conservation planning that aim to aid efforts to reduce pressure on natural resources and avoid, minimize, or mitigate the impacts of conservation on the wellbeing of local stakeholders. Evidence of the effectiveness of these programs is, however, decidedly mixed. This research examines the relationship between livelihoods, conservation, and wellbeing among nearshore fishers in Port Antonio, Jamaica, in the context of a recently established marine no-take area. The East Portland Fish Sanctuary was established in 2016 with the aim of supporting the recovery of depleted nearshore fish stocks, marine habitats, and mitigating impacts on local communities and fishers through a range of activities. Mitigation of impacts included efforts to shift pressure from overexploited nearshore fish stocks to offshore resources and to provide support to fishers for training and opportunities to earn income in the tourism sector. The results suggest that additional sources of income tended to enhance the wellbeing of fishers across several dimensions but that it also contributed to additional pressure on nearshore resources. Furthermore, neither tourism nor offshore fishing appear to be particularly promising in terms of their ability to deliver “win-win” outcomes for conservation and wellbeing. Instead, the results suggest that the impacts of different types of alternative livelihoods on conservation and wellbeing are highly variable and perhaps that efforts should be redirected to supporting efforts to provide suitable and acceptable alternatives to spearfishing which appears to have one of the largest overall impacts on individual harvest rates.


2022 ◽  
Vol 19 (1) ◽  
pp. 1-27
Author(s):  
Roberto Velázquez-Ochoa ◽  
María Julia Ochoa-Izaguirre ◽  
Martín Federico Soto-Jiménez

Abstract. The isotopic composition of carbon in macroalgae (δ13C) is highly variable, and its prediction is complex concerning terrestrial plants. The determinants of δ13C macroalgal variations were analyzed in a large stock of specimens that vary in taxa and morphology and were collected in shallow marine habitats in the Gulf of California (GC) with distinctive environmental conditions. A large δ13C variability (−34.6 ‰ to −2.2 ‰) was observed. Life-forms (taxonomy 57 %, morphology and structural organization 34 %) explain the variability related to carbon use physiology. Environmental conditions influenced the δ13C macroalgal values but did not change the physiology, which is most likely inherently species-specific. Values of δ13C were used as indicators of the presence or absence of carbon concentrating mechanisms (CCMs) and as integrative values of the isotope discrimination during carbon assimilation in the life cycle macroalgae. Based on δ13C signals, macroalgae were classified in three strategies relative to the capacity of CCM: (1) HCO3- uptake (δ13C > −10 ‰), (2) using a mix of CO2 and HCO3- uptake (-10<δ13C > −30 ‰), and (3) CO2 diffusive entry (δ13C < −30 ‰). Most species showed a δ13C that indicates a CCM using a mix of CO2 and HCO3- uptake. HCO3- uptake is also widespread among GC macroalgae, with many Ochrophyta species. Few species belonging to Rhodophyta relied on CO2 diffusive entry exclusively, while calcifying macroalgae species using HCO3- included only Amphiroa and Jania. The isotopic signature evidenced the activity of CCM, but it was inconclusive about the preferential uptake of HCO3- and CO2 in photosynthesis and the CCM type expressed in macroalgae. In the study of carbon use strategies, diverse, species-specific, and complementary techniques to the isotopic tools are required.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jordan A. Hollarsmith ◽  
Kelly Andrews ◽  
Nicole Naar ◽  
Samuel Starko ◽  
Max Calloway ◽  
...  

Diversity ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 6
Author(s):  
Alexander G. Dvoretsky ◽  
Vladimir G. Dvoretsky

Crabs are important ecosystem engineers in marine habitats worldwide. Based on long-term data, we analyzed the species composition and infestation indices of epibionts and symbionts colonizing the great spider crab, Hyas araneus, and two lithodid crabs—the northern stone crab, Lithodes maja, and the red king crab, Paralithodes camtschaticus—in the coastal zone of the Barents Sea. The epibiotic communities found on great spider crabs were closer to northern stone crabs (33%) compared to red king crabs (25%). The prevalence of mobile symbionts (amphipods, Ischyrocerus, and polychaetes, Harmothoe) and common epibionts, such as barnacles and hydrozoans, was low on great spider crabs and high on the body and in the gills of lithodid crabs. Epiphytes were abundant on great spider crabs but not present on both species of lithodid crabs. Egg symbionts found on H. araneus and P. camtschaticus do not affect their local populations. Differences in the fouling communities found on the three crab species are associated with host size range, surface properties of their carapaces, and behavior patterns.


2021 ◽  
Vol 7 (12) ◽  
pp. 1102
Author(s):  
Viridiana Magaña-Dueñas ◽  
José Francisco Cano-Lira ◽  
Alberto Miguel Stchigel

The Dothideomycetes are a class of cosmopolitan fungi that are present principally in terrestrial environments, but which have also been found in freshwater and marine habitats. In the present study, more than a hundred samples of plant debris were collected from various freshwater locations in Spain. Its incubation in wet chambers allowed us to detect and to isolate in pure culture numerous fungi producing asexual reproductive fruiting bodies (conidiomata). Thanks to a morphological comparison and to a phylogenetic analysis that combined the internal transcribed spacer (ITS) region of the nrDNA with fragments of the RNA polymerase II subunit 2 (rpb2), beta tubulin (tub2), and the translation elongation factor 1-alpha (tef-1) genes, six of those strains were identified as new species to science. Three belong to the family Didymellaceae: Didymella brevipilosa, Heterophoma polypusiformis and Paraboeremia clausa; and three belong to the family Phaeosphaeriaceae:Paraphoma aquatica, Phaeosphaeria fructigena and Xenophoma microspora. The finding of these new taxa significantly increases the number of the coelomycetous fungi that have been described from freshwater habitats.


Sign in / Sign up

Export Citation Format

Share Document