Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems

2010 ◽  
Vol 60 (8) ◽  
pp. 1765-1769 ◽  
Author(s):  
Peter Kämpfer ◽  
A. B. Arun ◽  
Chiu-Chung Young ◽  
Wen-Ming Chen ◽  
K. R. Sridhar ◽  
...  

A bacterial strain (CC-VM-7T), isolated from the faeces of the pill millipede Arthrosphaera magna Attems collected in India, was studied to determine its taxonomic allocation. Cells stained Gram-negative and were rod-shaped. Comparative analyses of the 16S rRNA gene sequence of the strain with those of the most closely related species clearly suggested allocation to the genus Chryseobacterium, with the highest sequence similarities of 99.2 % to Chryseobacterium gleum CCUG 14555T, 98.6 % to Chryseobacterium indologenes CCUG 14556T and 98.4 % to Chryseobacterium aquifrigidense KCTC 12894T. 16S rRNA gene sequence similarities to all other species of the genus Chryseobacterium were below 98 %. The major whole-cell fatty acids were iso-C15 : 0 and iso-C17 : 1 ω9c. DNA–DNA hybridization resulted in relatedness values of only 29.6 % (reciprocal 31.3 %) to Chryseobacterium gleum CCUG 14555T, 41.2 % (reciprocal 38.8 %) to C. indologenes CCUG 14556T and 35.4 % (reciprocal 38.5 %) to C. aquifrigidense KCTC 12894T. DNA–DNA relatedness, biochemical and chemotaxonomic properties clearly show that strain CC-VM-7T represents a novel species, for which the name Chryseobacterium arthrosphaerae sp. nov. is proposed. The type strain is CC-VM-7T (=CCUG 57618T =CCM 7645T).

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2803-2809 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Jia Xu ◽  
Stefanie P. Glaeser

A yellow, nitrogen-fixing bacterial strain, NXU-44T, isolated from the rhizosphere of switchgrass (Panicum virgatum) in Auburn, Alabama, USA, was studied to determine its taxonomic position. Cells of the isolate were rod-shaped and Gram-stain-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Flavobacterium with highest sequence similarities to the type strains of Flavobacterium ginsenosidimutans (97.9 %), Flavobacterium phragmitis (97.6 %) and Flavobacterium anhuiense (97.5 %). The 16S rRNA gene sequence similarities to all other species of the genus Flavobacterium were below 97.5 %. The fatty acid profile of strain NXU-44T consisted of the major fatty acids iso-C15 : 0, iso-C15 : 0 2-OH/C16 : 1ω7c and iso-C17 : 0 3-OH. The major compounds in the polar lipid profile were phosphatidylethanolamine, phosphatidylserine, one aminolipid and two polar lipids. The quinone system was composed exclusively of menaquinone MK-6. The polyamine pattern contained the major compound sym-homospermidine and only minor amounts of other polyamines. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. These data and the differential biochemical and chemotaxonomic properties show that strain NXU-44T represents a novel species of the genus Flavobacterium for which the name Flavobacterium nitrogenifigens sp. nov. is proposed. The type strain is NXU-44T ( = LMG 28694T = CIP 110894T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2387-2391 ◽  
Author(s):  
Peter Kämpfer ◽  
Kshitij Chandel ◽  
G. B. K. S. Prasad ◽  
Y. S. Shouche ◽  
Vijay Veer

A yellow-pigmented bacterial strain, R4-1AT, isolated from the midgut of the mosquito Culex quinquefasciatus (a vector of lymphatic filariasis), was studied using a polyphasic approach. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of this organism with sequences of type strains of the most closely related species clearly showed an allocation to the genus Chryseobacterium, with the highest sequence similarities (all 97.9 %) to Chryseobacterium jejuense JS17-8T, C. indologenes ATCC 29897T, C. arthrosphaerae CC-VM-7T and C. aquifrigidense CW9T. 16S rRNA gene sequence similarities to type strains of other Chryseobacterium species were below 97.5 %. The fatty acid profile of strain R4-1AT included the major fatty acids iso-15 : 0, summed feature 4 (comprising iso-15 : 0 2-OH and/or 16 : 1ω7c), iso-17 : 1ω9c and iso-17 : 0 3-OH. DNA–DNA hybridizations with C. jejuense KACC 12501T, C. indologenes CCUG 14556T, C. arthrosphaerae CC-VM-7T and C. aquifrigidense KCTC 12894T resulted in relatedness values of 38.3 % (reciprocal 30.5 %), 29.4 % (32.1 %), 23.2 % (37.2 %) and 29.5 % (47.1 %), respectively. These results and the differentiating biochemical and chemotaxonomic properties show that strain R4-1AT represents a novel species, for which the name Chryseobacterium culicis sp. nov. is proposed. The type strain is R4-1AT (=LMG 25442T =CCM 7716T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2179-2186 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A yellow-pigmented bacterial strain, 91A-612T, isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea) in Alabama, USA, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Chryseobacterium, showing the highest sequence similarities to the type strains of Chryseobacterium molle (98.4 %), C. pallidum (98.3 %) and C. hominis (97.8 %). The 16S rRNA gene sequence similarities to the type strains of all other species of the genus Chryseobacterium were below 97.0 %. The fatty acid profile of strain 91A-612T consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH/C16 : 1ω7c) and iso-C17 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine and several unidentified lipids, including two lipids that did not contain a sugar moiety, an amino group or a phosphate group (L3, L8), and an aminolipid (AL1). The quinone system was composed mainly of MK-6. The polyamine pattern contained sym-homospermidine as the major compound and moderate amounts of spermidine and spermine. DNA–DNA hybridizations between strain 91A-612T and the type strains of C. molle, C. pallidum and C. hominis resulted in relatedness values well below 70 %. These data and the differentiating biochemical and chemotaxonomic properties showed that isolate 91A-612T represents a novel species of the genus Chryseobacterium, for which we propose the name Chryseobacterium arachidiradicis sp. nov. (type strain 91A-612T = LMG 27814T = CCM 8490T = CIP 110647T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1301-1304 ◽  
Author(s):  
Fo-Ting Shen ◽  
Peter Kämpfer ◽  
Chiu-Chung Young ◽  
Wei-An Lai ◽  
A. B. Arun

A bacterial strain (CC-TWGS1-8T) isolated from a tar-contaminated soil in Taiwan was studied in a detailed taxonomic study. The cells were Gram-negative, rod-shaped and non-spore-forming. Phylogenetic analyses using the 16S rRNA gene sequence of the strain clearly revealed an affiliation to the genus Chryseobacterium, the highest sequence similarities being to the type strain of Chryseobacterium indologenes (96·8 %), to Chryseobacterium gleum (96·8 %) and to Chryseobacterium joostei (96·4 %). The 16S rRNA gene sequence similarities to all other Chryseobacterium species were below 96 %. The major whole-cell fatty acids were 15 : 0 iso (35·4 %) and 17 : 0 iso 3OH (22·5 %). DNA–DNA hybridization values and the biochemical and chemotaxonomic properties demonstrate that strain CC-TWGS1-8T represents a novel species, for which the name Chryseobacterium taichungense sp. nov. is proposed. The type strain is CC-TWGS1-8T (=CCUG 50001T=CIP 108519T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2579-2582 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Li-Hua Xu ◽  
Cheng-Lin Jiang ◽  
...  

Strain B538T is a Gram-positive, motile, rod-shaped bacterium, which was isolated from Xinjiang province in China. This organism grew optimally at 30–35 °C and pH 8.0–8.5. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B538T belonged to the genus Paenibacillus and chemotaxonomic data (DNA G+C content, 47.0 mol%; major isoprenoid quinone, MK-7; cell wall type, A1γ meso-diaminopimelic acid; major fatty acids, anteiso-C15 : 0 and C16 : 0) supported affiliation of the isolate with the genus Paenibacillus. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Paenibacillus glycanilyticus DS-1T, with 16S rRNA gene sequence similarity of 98.1 %; sequence similarities to other members of the genus Paenibacillus used in the phylogenetic tree were less than 96.5 %. The DNA–DNA relatedness between strain B538T and P. glycanilyticus DS-1T was about 8.0 %. On the basis of physiological and molecular properties, strain B538T (=KCTC 3952T=DSM 16970T) is proposed as the type strain of a novel species within the genus Paenibacillus, for which the name Paenibacillus xinjiangensis sp. nov. is proposed.


2010 ◽  
Vol 60 (4) ◽  
pp. 938-943 ◽  
Author(s):  
Eun Ju Choi ◽  
Hak Cheol Kwon ◽  
Young Chang Sohn ◽  
Hyun Ok Yang

A novel marine bacterium, strain KMD 001T, was isolated from the starfish Asterias amurensis, which inhabits the East Sea of Korea. Strain KMD 001T was aerobic, light-yellow pigmented and Gram-stain-negative. Analyses of the 16S rRNA gene sequence revealed that strain KMD 001T represents a novel lineage within the class Gammaproteobacteria. Strain KMD 001T is closely related to the genera Endozoicomonas and Zooshikella, which belong to the family Hahellaceae and to the order Oceanospirillales. The 16S rRNA gene sequence of strain KMD 001T shows similarities of approximately 91.8–94.6 % with the above-mentioned genera. The DNA G+C content of KMD 001T is 47.6 mol%. It contains Q-9 as the major isoprenoid quinone. The predominant fatty acids were determined to be anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. Strain KMD 001T should be assigned to a novel bacterial genus within the class Gammaproteobacteria based on its phylogenetic, chemotaxonomic and phenotypic characteristics. The name Kistimonas asteriae gen. nov., sp. nov. is proposed. The type strain is KMD 001T (=KCCM 90076T =JCM 15607T).


Author(s):  
Zhipeng Cai ◽  
Huibin Lu ◽  
Youfeng Qian ◽  
Letian Chen ◽  
Meiying Xu

Four Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (Y26, Y57T, ZJ14WT and RP18W) were isolated from mariculture fishponds in PR China. Comparisons based on 16S rRNA gene sequences showed that strains Y26 and Y57T share 16S rRNA gene sequence similarities in the range of 95.1−98.5 % with species of the genus Bowmanella , and strains ZJ14WT and RP18W share 16S rRNA gene sequence similarities in the range of 96.7 −98.8 % with species of the genus Amphritea , respectively. The genome sizes of strains Y26, Y57T, ZJ14WT and RP18W were about 4.85, 5.40, 4.70 and 4.70 Mbp with 49.5, 51.7, 51.2 and 51.3 mol% G+C content, respectively. The calculated pairwise OrthoANIu values among strains Y26, Y57T and species of the genus Bowmanella were in the range of 72.6−83.1 %, but the value between strains Y26 and Y57T was 96.2 %. The pairwise OrthoANIu values among strains ZJ14WT, RP18W and other species of the genus Amphritea were all less than 93.9 %, but the value between strains ZJ14WT and RP18W was 99.3 %. Q-8 was the major respiratory quinone of strains Y26, Y57T, ZJ14WT and RP18W, and the major fatty acids of these strains were all C16 : 1 ω7c, C16 : 0 and C18 : 1 ω7c. The predominant polar lipids of strains Y26 and Y57T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol, but strains ZJ14WT and RP18W only contained phosphatidylethanolamine and phosphatidylglycerol. Combining phenotypic, biochemical and genotypic characteristics, strains Y26 and Y57T should belong to the same species and represent a novel member of the genus Bowmanella , and strains ZJ14WT and RP18W should belong to the same species and represent a novel member of the genus Amphritea , for which the names Bowmanella yangjiangensis sp. nov. (type strain Y57T=GDMCC 1.2180T=KCTC 82439T) and Amphritea pacifica sp. nov. (type strain ZJ14WT=GDMCC 1.2203T=KCTC 82438T) are proposed.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 147-153 ◽  
Author(s):  
Peter Kämpfer ◽  
Stefanie P. Glaeser ◽  
Marco Gräber ◽  
Andreas Rabenstein ◽  
Jan Kuever ◽  
...  

Two Gram-negative, rod-shaped, non-spore-forming bacteria, isolated from metal working fluids were investigated to determine their taxonomic positions. On the basis of 16S rRNA gene sequence phylogeny, both strains (MPA 1113T and MPA 1105T) formed a distinct cluster with 97.7 % sequence similarity between them, which was in the vicinity of members of the genera Methylobacterium , Camelimonas , Chelatococcus , Bosea , Salinarimonas and Microvirga to which they showed low sequence similarities (below 94 %). The predominant compounds in the polyamine pattern and in the quinone system of the two strains were spermidine and ubiquinone Q-10, respectively. The polar lipid profiles were composed of the major compounds: phosphatidylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine, major or moderate amounts of diphosphatidylglycerol, two unidentified glycolipids and three unidentified aminolipids. Several minor lipids were also detected. The major fatty acids were either C19 : 0 cyclo ω8c or C18 : 1ω7c. The results of fatty acid analysis and physiological and biochemical tests allowed both, the genotypic and phenotypic differentiation of the isolates from each other, while the chemotaxonomic traits allowed them to be differentiated from the most closely related genera. In summary, low 16S rRNA gene sequence similarities and marked differences in polar lipid profiles, as well as in polyamine patterns, is suggestive of a novel genus for which the name Pseudochelatococcus gen. nov. is proposed. MPA 1113T ( = CCM 8528T = LMG 28286T = CIP 110802T) and MPA 1105T ( = CCM 8527T = LMG 28285T) are proposed to be the type strains representing two novel species within the novel genus, Pseudochelatococcus gen. nov., for which the names Pseudochelatococcus lubricantis sp. nov. and Pseudochelatococcus contaminans sp. nov. are suggested, respectively.


2006 ◽  
Vol 56 (12) ◽  
pp. 2765-2770 ◽  
Author(s):  
Preeti Chaturvedi ◽  
S. Shivaji

Strain HHS 31T, a Gram-positive, motile, rod-shaped, non-spore-forming, alkaliphilic bacterium, was isolated from the melt water of a glacier. Phenotypic and chemotaxonomic characteristics indicate that strain HHS 31T is related to species of the genus Exiguobacterium. The 16S rRNA gene sequence similarities between HHS 31T and strains of known species confirm that it is closely related to members of the genus Exiguobacterium (93–99 %) and that it exhibits >97 % similarity with Exiguobacterium acetylicum DSM 20416T (98.9 %), Exiguobacterium antarcticum DSM 14480T (98.0 %), Exiguobacterium oxidotolerans JCM 12280T (97.9 %) and Exiguobacterium undae DSM 14481T (97.4 %). Phylogenetic analysis based on the 16S rRNA gene sequence further confirms the affiliation of HHS 31T with the genus Exiguobacterium. However, the levels of DNA–DNA relatedness between HHS 31T and E. oxidotolerans JCM 12280T, E. acetylicum DSM 20416T, E. undae DSM 14481T and E. antarcticum DSM 14480T are 50, 63, 67 and 28 %, respectively. Strain HHS 31T also differs from these four closely related species in terms of a number of phenotypic traits. The phenotypic, chemotaxonomic and phylogenetic data suggest that HHS 31T merits the status of a novel species, for which the name Exiguobacterium indicum sp. nov. is proposed. The type strain is HHS 31T (=LMG 23471T=IAM 15368T).


Sign in / Sign up

Export Citation Format

Share Document