scholarly journals Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro

2011 ◽  
Vol 61 (2) ◽  
pp. 417-421 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Han-Su You ◽  
Dong-Heon Lee ◽  
Duck-Chul Oh

A Gram-stain-negative, yellow-pigmented, rod-shaped, strictly aerobic, non-flagellated, non-gliding and oxidase- and catalase-positive bacterium, designated A6T, was isolated from a marine sponge, Halichondria oshoro, collected on the coast of Jeju Island, South Korea. Phylogenetic analysis based on the nearly complete 16S rRNA gene sequence revealed that strain A6T was a member of the family Flavobacteriaceae. The closest relatives were Aquimarina intermedia LMG 23204T, A. latercula ATCC 23177T, A. brevivitae SMK-19T and A. muelleri KMM 6020T, with which strain A6T shared 95.7, 95.1, 94.7 and 94.6 % 16S rRNA gene sequence similarity, respectively. The dominant fatty acids of strain A6T were iso-C15 : 0 (32.2 %), iso-C17 : 0 3-OH (20.0 %), iso-C15 : 0 3-OH (12.3 %), iso-C15 : 1 G (7.2 %) and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c; 6.8 %). The DNA G+C content of strain A6T was 36.0 mol% and the major respiratory quinone was MK-6. On the basis of combined phenotypic and phylogenetic analyses, strain A6T represents a novel species of the genus Aquimarina, for which the name Aquimarina spongiae sp. nov. is proposed. The type strain is A6T (=KCTC 22663T =DSM 22623T).

2010 ◽  
Vol 60 (9) ◽  
pp. 2027-2031 ◽  
Author(s):  
Ying Liu ◽  
Cheng-Jun Xu ◽  
Jia-Tong Jiang ◽  
Ying-Hao Liu ◽  
Xue-Feng Song ◽  
...  

A Gram-negative, rod-shaped, non-pigmented, non-spore-forming bacterial strain that was motile by a single polar flagellum, designated A1-9T, was isolated from Daqing reservoir in north-east China and its taxonomic position was studied using a polyphasic approach. Strain A1-9T was non-halophilic, strictly aerobic and heterotrophic and lacked carotenoids, internal membranes and genes for photosynthesis (puf genes). Strain A1-9T grew at 10–40 °C (optimum, 25–30 °C) and pH 5.5–9.0 (optimum, pH 6.0–6.5) and tolerated up to 1.0 % NaCl (w/v). Neither phototrophic nor fermentative growth was observed. The predominant ubiquinone was Q-10 and the major fatty acid was C18 : 1 ω7c (70 %). The DNA G+C content was 64.4 mol% (T m). Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain A1-9T, together with Catellibacterium nectariphilum AST4T, formed a deep line within the ‘Rhodobacter clade’ of the family Rhodobacteraceae and strain A1-9T showed 94.2 % 16S rRNA gene sequence similarity to C. nectariphilum AST4T. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain A1-9T is considered to represent a novel species of the genus Catellibacterium, for which the name Catellibacterium aquatile sp. nov. is proposed. The type strain is A1-9T (=CGMCC 1.7029T =NBRC 104254T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2377-2381 ◽  
Author(s):  
Xiang He ◽  
Ting Xiao ◽  
Haiju Kuang ◽  
Xiaojun Lan ◽  
Maripat Tudahong ◽  
...  

A Gram-staining-negative, yellow-coloured, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated HS39T, isolated from a soil sample collected from a natural Populus euphratica forest in Xinjiang, China, was characterized using a polyphasic approach. The isolate grew optimally at 30–37 °C, at pH 6.5–8.0 and with 0–3 % NaCl. Analysis of the 16S rRNA gene sequence of strain HS39T revealed that it is a member of the genus Sphingobacterium. Sphingobacterium mizutaii ATCC 33299T was the nearest relative (94.0 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA was 40.2 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant isoprenoid quinone was MK-7. On the basis of phenotypic properties and phylogenetic inference, strain HS39T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium shayense sp. nov. is proposed. The type strain is HS39T (=CCTCC AB 209006T =NRRL B-59203T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2908-2912 ◽  
Author(s):  
Young-Ok Kim ◽  
Hee Jeong Kong ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Kyung-Kil Kim ◽  
...  

A Gram-stain-negative, non-motile, non-spore-forming and short rod- or rod-shaped bacterial strain, designated 22-5T, was isolated from a bluespotted cornetfish, Fistularia commersonii, and subjected to taxonomic study. Strain 22-5T grew optimally at 30 °C and in the presence of 2–5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 22-5T belonged to the genus Paracoccus and joined the cluster comprising Paracoccus homiensis DD-R11T and Paracoccus zeaxanthinifaciens ATCC 21588T, with which strain 22-5T exhibited 97.4 and 96.9 % 16S rRNA gene sequence similarity, respectively. Strain 22-5T exhibited 94.0–96.6 % 16S rRNA gene sequence similarity with the other type strains of species of the genus Paracoccus. Strain 22-5T contained Q-10 as the predominant menaquinone and C18 : 1 ω7c as the predominant fatty acid. In this study, P. zeaxanthinifaciens KCTC 22688T also contained Q-10 as the predominant isoprenoid quinone. The DNA G+C content of strain 22-5T was 63.6 mol%. Strain 22-5T exhibited 44 and 32 % DNA–DNA relatedness to P. homiensis KACC 11518T and P. zeaxanthinifaciens KCTC 22688T, respectively. On the basis of phenotypic, phylogenetic and genetic data, strain 22-5T is considered to represent a novel species of the genus Paracoccus, for which the name Paracoccus fistulariae sp. nov. is proposed. The type strain is 22-5T (=KCTC 22803T =CCUG 58401T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2089-2095 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Tae-Kwang Oh

Two Gram-negative, non-motile, pleomorphic bacterial strains, DS-40T and DS-45T, were isolated from a soil sample collected from Dokdo, Korea, and their exact taxonomic positions were investigated by using a polyphasic approach. Strains DS-40T and DS-45T grew optimally at 25 °C and pH 6.5–7.5 in the presence of 0–1.0 % (w/v) NaCl. They contained MK-7 as the predominant menaquinone and possessed iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C contents of strains DS-40T and DS-45T were 36.0 and 36.8 mol%, respectively. Strains DS-40T and DS-45T shared a 16S rRNA gene sequence similarity of 96.7 % and demonstrated a mean DNA–DNA relatedness level of 12 %. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains DS-40T and DS-45T were most closely phylogenetically affiliated with the genus Pedobacter of the family Sphingobacteriaceae. Strains DS-40T and DS-45T exhibited 16S rRNA gene sequence similarity values of 91.4–93.7 and 89.9–91.6 % with respect to the type strains of Pedobacter and Sphingobacterium species, respectively. Phenotypic and chemotaxonomic properties, together with the phylogenetic data, support the assignment of strains DS-40T and DS-45T as two distinct species within the genus Pedobacter. On the basis of phenotypic, phylogenetic and genetic data, strains DS-40T and DS-45T represent two novel species of the genus Pedobacter, for which the names Pedobacter lentus sp. nov. and Pedobacter terricola sp. nov. are proposed, respectively. The respective type strains are DS-40T (=KCTC 12875T=JCM 14593T) and DS-45T (=KCTC 12876T=JCM 14594T).


2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


2005 ◽  
Vol 55 (2) ◽  
pp. 913-917 ◽  
Author(s):  
F. L. Thompson ◽  
C. C. Thompson ◽  
S. Naser ◽  
B. Hoste ◽  
K. Vandemeulebroecke ◽  
...  

Six new Vibrio-like isolates originating from different species of bleached and healthy corals around Magnetic Island (Australia) were investigated using a polyphasic approach. Phylogenetic analyses based on 16S rRNA, recA and rpoA gene sequences split the isolates in two new groups. Strains LMG 22223T, LMG 22224, LMG 22225, LMG 22226 and LMG 22227 were phylogenetic neighbours of Photobacterium leiognathi LMG 4228T (95·6 % 16S rRNA gene sequence similarity), whereas strain LMG 22228T was related to Enterovibrio norvegicus LMG 19839T (95·5 % 16S rRNA gene sequence similarity). The two new groups can be distinguished from closely related species on the basis of several phenotypic features, including fermentation of d-mannitol, melibiose and sucrose, and utilization of different compounds as carbon sources, arginine dihydrolase activity, nitrate reduction, resistance to the vibriostatic agent O/129 and the presence of fatty acids 15 : 0 iso and 17 : 0 iso. The names Photobacterium rosenbergii sp. nov. (type strain LMG 22223T=CBMAI 622T=CC1T) and Enterovibrio coralii sp. nov. (type strain LMG 22228T=CBMAI 623T=CC17T) are proposed to accommodate these new isolates. The G+C contents of the DNA of the two type strains are respectively 47·6 and 48·2 mol%.


2010 ◽  
Vol 60 (6) ◽  
pp. 1334-1338 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, non-motile and rod- or coccoid-shaped bacterial strain, MDN22T, was isolated from a soil sample from Korea. Strain MDN22T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 0–0.5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain MDN22T was phylogenetically most closely related to the genera Nocardioides and Marmoricola. In the neighbour-joining phylogenetic tree, strain MDN22T was most closely related to Nocardioides jensenii KCTC 9134T, with which it exhibited 98.3 % 16S rRNA gene sequence similarity. The strain exhibited 93.1–96.9 % and 95.3–95.9 % 16S rRNA gene sequence similarities to the type strains of other species of the genera Nocardioides and Marmoricola, respectively. The chemotaxonomic properties of strain MDN22T were consistent with those of the genus Nocardioides; the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, the predominant menaquinone was MK-8(H4) and the major fatty acids were iso-C16 : 0 and C17 : 1. The DNA G+C content was 68.7 mol%. DNA–DNA relatedness data and differential phenotypic properties suggested that strain MDN22T could be differentiated from N. jensenii and Nocardioides dubius. On the basis of the data obtained, strain MDN22T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides daedukensis sp. nov., is proposed. The type strain is MDN22T (=KCTC 19601T=CCUG 57505T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2951-2959 ◽  
Author(s):  
Timofey A. Pankratov ◽  
Svetlana N. Dedysh

Five strains of strictly aerobic, heterotrophic bacteria that form pink–red colonies and are capable of hydrolysing pectin, xylan, laminarin, lichenan and starch were isolated from acidic Sphagnum peat bogs and were designated OB1010T, LCBR1, TPB6011T, TPB6028T and TPO1014T. Cells of these isolates were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance. Old cultures contained spherical bodies of varying sizes, which represent starvation forms. Cells of all five strains were acidophilic and psychrotolerant, capable of growth at pH 3.0–7.5 (optimum pH 3.8–4.5) and at 2–33 °C (optimum 15–22 °C). The major fatty acids were iso-C15 : 0, C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH). The major menaquinone detected was MK-8. The pigments were carotenoids. The genomic DNA G+C contents were 57.3–59.3 mol%. The five isolates were found to be members of subdivision 1 of the phylum Acidobacteria and displayed 95.3–98.9 % 16S rRNA gene sequence similarity to each other. The closest described relatives to strains OB1010T, LCBR1, TPB6011T, TPB6028T, and TPO1014T were members of the genera Terriglobus (94.6–95.8 % 16S rRNA gene sequence similarity) and Edaphobacter (94.2–95.4 %). Based on differences in cell morphology, phenotypic characteristics and hydrolytic capabilities, we propose a novel genus, Granulicella gen. nov., containing four novel species, Granulicella paludicola sp. nov. with type strain OB1010T (=DSM 22464T =LMG 25275T) and strain LCBR1, Granulicella pectinivorans sp. nov. with type strain TPB6011T (=VKM B-2509T =DSM 21001T), Granulicella rosea sp. nov. with type strain TPO1014T (=DSM 18704T =ATCC BAA-1396T) and Granulicella aggregans sp. nov. with type strain TPB6028T (=LMG 25274T =VKM B-2571T).


2006 ◽  
Vol 56 (10) ◽  
pp. 2415-2420 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Peter Schumann ◽  
Tae-Kwang Oh

Two Gram-positive, non-motile, non-spore-forming and rod-shaped actinomycete strains, KSL-113T and KSL-133, were isolated from an alkaline soil in Korea, and their taxonomic positions were investigated by using a polyphasic approach. The strains grew optimally at 30 °C and pH 9.0. Phenotypic, phylogenetic and genetic similarities indicated that strains KSL-113T and KSL-133 represent the same species. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains KSL-113T and KSL-133 fell within the family Microbacteriaceae of the suborder Micrococcineae, the highest 16S rRNA gene sequence similarity values (98.2 %) being obtained with respect to Microcella putealis CV-2T. The 16S rRNA gene sequence similarities between strains KSL-113T and KSL-133 and the other members of the family Microbacteriaceae used in the phylogenetic analysis were less than 96.0 %. Strains KSL-113T and KSL-133 could be clearly distinguished from members of the family Microbacteriaceae on the basis of differences in chemotaxonomic properties, including the predominant menaquinone type, the cell-wall peptidoglycan type and the fatty acid profile. Accordingly, on the basis of the combined phenotypic, chemotaxonomic and phylogenetic data, strains KSL-113T and KSL-133 constitute a novel genus and species of the family Microbacteriaceae, for which the name Yonghaparkia alkaliphila gen. nov., sp. nov. is proposed. The type strain of Yonghaparkia alkaliphila is KSL-113T (=KCTC 19126T=CIP 108920T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1584-1588 ◽  
Author(s):  
Shuhei Yabe ◽  
Yoshifumi Aiba ◽  
Yasuteru Sakai ◽  
Masaru Hazaka ◽  
Kazuyoshi Kawahara ◽  
...  

A Gram-negative bacterium, designated CKTN2T, was isolated from compost. Cells of strain CKTN2T were strictly aerobic rods. The isolate grew at 20–50 °C (optimum 40–45 °C), but not below 15 °C or above 52 °C, and at pH 5.9–8.8 (optimum pH 7.0), but not below pH 5.4 or above pH 9.3. The DNA G+C content was 40.3 mol%. The predominant menaquinone was MK-7. The major fatty acids were iso-C15 : 0 (45.2 %), iso-C17 : 0 3-OH (11.1 %) and C18 : 0 (14.5 %). Analysis of the 16S rRNA gene sequence of strain CKTN2T revealed that it is a member of the genus Sphingobacterium and is most closely related to Sphingobacterium alimentarium DSM 22362T (93.2 % 16S rRNA gene sequence similarity). Strain CKTN2T could be distinguished from its closest phylogenetic relatives by different phenotypic characteristics. According to the phenotypic and genotypic characteristics, strain CKTN2T represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium thermophilum sp. nov. is proposed. The type strain is CKTN2T ( = JCM 17858T  = KCTC 23708T).


Sign in / Sign up

Export Citation Format

Share Document