scholarly journals Nocardia artemisiae sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Artemisia annua L.

2011 ◽  
Vol 61 (12) ◽  
pp. 2933-2937 ◽  
Author(s):  
Guo-Zhen Zhao ◽  
Jie Li ◽  
Wen-Yong Zhu ◽  
Hans-Peter Klenk ◽  
Li-Hua Xu ◽  
...  

A novel actinobacterium, designated YIM 65623T, was isolated from a surface-sterilized stem of Artemisia annua L. Strain YIM 65623T had morphological, biochemical, physiological and chemotaxonomic properties that were consistent with its classification in the genus Nocardia. Growth occurred with 0–7 % (w/v) NaCl (optimum 0–3 %), at pH 5.0–9.0 (optimum pH 6.0) and at 10–37 °C (optimum 20–28 °C). Comparative 16S rRNA gene sequence analysis showed that strain YIM 65623T constituted a distinct sublineage within the genus Nocardia and displayed 94.1–98.2 % sequence similarity to members of established species in the genus Nocardia. However, DNA–DNA relatedness and physiological and biochemical characteristics showed that strain YIM 65623T could be differentiated from its closest phylogenetic relatives. The G+C content of the genomic DNA was 69.6 mol%. It is proposed that strain YIM 65623T be classified as a representative of a novel species, Nocardia artemisiae sp. nov. The type strain is YIM 65623T ( = DSM 45379T  = CCTCC AA 209038T).

2010 ◽  
Vol 60 (4) ◽  
pp. 944-948 ◽  
Author(s):  
Nitcha Chamroensaksri ◽  
Somboon Tanasupawat ◽  
Ancharida Akaracharanya ◽  
Wonnop Visessanguan ◽  
Takuji Kudo ◽  
...  

A novel strain, designated TP2-8T, was isolated from fermented fish (pla-ra) in Thailand. It stained Gram-positive and the cells were aerobic, endospore-forming rods. The strain grew at pH 6–8 (optimum pH 7), 15–55 °C (optimum 37 °C) and 1–22 % (w/v) NaCl (optimum 5–10 %). It contained meso-diaminopimelic in the cell-wall peptidoglycan. MK-7 and cellular fatty acids anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0 were major components. Polar lipids diphosphatidylglycerol and phosphatidylglycerol and unidentified lipids were detected. The DNA G+C content was 37.6 mol%. Comparison of the 16S rRNA gene sequence of strain TP2-8T with those of other members of the family Bacillaceae indicated that it was a member of the genus Gracilibacillus (94.9–99.2 % sequence similarity) and was closely related to Gracilibacillus saliphilus YIM 91119T (99.2 % similarity), G. lacisalsi BH312T (98.6 %), G. orientalis XH-63T (97.7 %), ‘G. quinghaiensis’ YIM C229 (97.7 %) and G. boraciitolerans T-16XT (97.2 %). Strain TP2-8T showed low DNA–DNA relatedness (≤49 %) to G. saliphilus YIM 91119T, G. lacisalsi DSM 19029T, G. orientalis CCM 7326T, ‘G. quinghaiensis’ DSM 17858 and G. boraciitolerans JCM 21714T. On the basis of the physiological and biochemical characteristics and molecular data presented, strain TP2-8T is proposed to represent a novel species, Gracilibacillus thailandensis sp. nov. (type strain TP2-8T =JCM 15569T =PCU 304T =TISTR 1881T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4757-4762 ◽  
Author(s):  
Ying Sun ◽  
Zhaohui Guo ◽  
Qi Zhao ◽  
Qiyu Gao ◽  
QinJian Xie ◽  
...  

A Gram-stain-variable, rod-shaped, non-motile and endospore-forming bacterium, designated strain HZ1T, was isolated from a sample of bank side soil from Hangzhou city, Zhejiang province, PR China. On the basis of 16S rRNA gene sequence analysis, strain HZ1T was closely related to members of the genus Paenibacillus, sharing the highest levels of sequence similarity with Paenibacillus agarexedens DSM 1327T (94.4 %), Paenibacillus sputi KIT00200-70066-1T (94.4 %). Growth occurred at 15–42 °C (optimum 30–37 °C), pH 5.0–9.5 (optimum pH 7.0–8.0) and NaCl concentrations of up to 6.0 % (w/v) were tolerated (optimum 0.5 %). The dominant respiratory quinone was MK-7 and the DNA G+C content was 40.1 mol%. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids of strain HZ1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unknown lipids. The diagnostic diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain HZ1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus ripae sp. nov. (type strain HZ1T = CCTCC AB 2014276T = LMG 28639T) is proposed.


2011 ◽  
Vol 61 (12) ◽  
pp. 2811-2815 ◽  
Author(s):  
Honghui Zhu ◽  
Shumei Jiang ◽  
Qing Yao ◽  
Yonghong Wang ◽  
Meibiao Chen ◽  
...  

An actinomycete, designated strain GIMN4.003T, was isolated from seawater collected in Sanya, China. It produced white aerial mycelium and yellow substrate mycelium on Gause’s synthetic agar medium no. 1. The substrate mycelium colour was not sensitive to pH. Scanning electron microscopy observations revealed that GIMN4.003T produced straight to flexuous spore chains of rough to warty spores. ll-Diaminopimelic acid was present in the cell-wall hydrolysate. Based on chemotaxonomy and morphological features, strain GIMN4.003T was identified as a member of the genus Streptomyces. Melanin was not produced. No antimicrobial activity was detected against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Penicillium citrinum or Candida albicans. Analysis of the 16S rRNA gene sequence revealed that the highest sequence similarity was to Streptomyces radiopugnans R97T (99.0 %). However, DNA relatedness between GIMN4.003T and S. radiopugnans DSM 41901T was low (41.24±1.47 %). Furthermore, the morphological, physiological and biochemical characteristics of strain GIMN4.003T were different from those of S. radiopugnans DSM 41901T and the type strains of other closely related Streptomyces species. On the basis of its physiological and molecular properties, it is evident that strain GIMN4.003T ( = CCTCCM 208215T  = NRRL B-24801T) represents the type strain of a novel species within the genus Streptomyces, for which the name Streptomyces fenghuangensis sp. nov. is proposed.


2007 ◽  
Vol 57 (6) ◽  
pp. 1336-1341 ◽  
Author(s):  
Myung Kyum Kim ◽  
Ju-Ryun Na ◽  
Dong Ha Cho ◽  
Nak-Kyun Soung ◽  
Deok-Chun Yang

Strain Jip14T, a Gram-negative, non-spore-forming, rod-shaped, non-motile bacterium, was isolated from dried rice straw and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Jip14T belongs to the family Sphingobacteriaceae, and the highest degree of sequence similarity was determined to be to Pedobacter saltans DSM 12145T (88.5 %), Pedobacter africanus DSM 12126T (87.6 %), Pedobacter heparinus DSM 2366T (87.1 %) and Pedobacter caeni LMG 22862T (86.9 %). Chemotaxonomic data revealed that strain Jip14T possesses menaquinone MK-7 and the predominant fatty acids C15 : 0 iso, C16 : 0, C16 : 0 10-methyl, C17 : 0 iso 3-OH and summed feature 3 (C15 : 0 iso 2-OH/C16 : 1 ω7c). The results of physiological and biochemical tests clearly demonstrated that strain Jip14T represents a distinct species. Based on these data, Jip14T should be classified within a novel genus and species, for which the name Parapedobacter koreensis gen. nov., sp. nov. is proposed. The type strain of Parapedobacter koreensis is Jip14T (=KCTC 12643T=LMG 23493T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2007 ◽  
Vol 57 (3) ◽  
pp. 577-581 ◽  
Author(s):  
Yi-Ju Chou ◽  
Geoffrey N. Elliott ◽  
Euan K. James ◽  
Kuan-Yin Lin ◽  
Jui-Hsing Chou ◽  
...  

A bacterium designated strain Liujia-146T was isolated in the Tainan area of southern Taiwan from root nodules of the aquatic legume Neptunia oleracea. 16S rRNA gene sequence analysis indicated that strain Liujia-146T was highly similar to Labrys monachus VKM B-1479T (97.8 %) and Labrys methylaminiphilus JLW10T (95.5 %) and belonged to the order Rhizobiales in the Alphaproteobacteria. On the basis of phylogenetic analysis, DNA–DNA hybridization data, physiological and biochemical characteristics and fatty acid compositions, the organism was shown to belong to the genus Labrys whilst representing a novel species within this genus. We propose to classify strain Liujia-146T (=BCRC 17578T=LMG 23578T) as the type strain of Labrys neptuniae sp. nov.


2011 ◽  
Vol 61 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Galina Dubinina ◽  
Margarita Grabovich ◽  
Natalia Leshcheva ◽  
Frederick A. Rainey ◽  
Ekaterina Gavrish

A novel strain of fermenting, aerotolerant, chemo-organoheterotrophic spirochaete designated PT was isolated from a sulfur ‘Thiodendron’ mat in a saline spring at the Staraya Russa resort (Novgorod Region, Russia). Cells of strain PT exhibited a helical shape. The spirochaete required sulfide in the growth medium and was able to oxidize it non-enzymically to elemental sulfur via the interaction of H2O2 with sulfide and deposit it in the periplasmic space. Growth occurred at 4–32 °C (optimum at 28–30 °C), pH 6.0–8.5 (optimum pH 7.0–7.5), and in 0.1–1 M NaCl (optimum 0.35 M). The isolate used several sugars and polysaccharides as carbon or energy sources but did not use peptides, amino acids, organic acids or alcohols. The products of glucose fermentation were formate, acetate, ethanol, pyruvate, CO2 and H2. The genomic DNA G+C content was 41.7 mol%. 16S rRNA gene sequence analysis showed that strain PT fell within a group of species in the genus Spirochaeta, including Spirochaeta litoralis, S. isovalerica and S. cellobiosiphila, with which it shared less then 89 % sequence similarity. On the basis of its morphology, physiology and other phenotypic properties, as well as its phylogenetic position, the new isolate is considered to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta perfilievii sp. nov. is proposed. The type strain is PT (=DSM 19205T =VKM B-2514T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1615-1619 ◽  
Author(s):  
Myung Kyum Kim ◽  
Wan-Taek Im ◽  
Jun-Gyo In ◽  
Sung-Hoon Kim ◽  
Deok-Chun Yang

A Gram-negative, non-spore-forming, rod-shaped, motile bacterium, strain Ko06T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Ko06T belongs to the Gammaproteobacteria, and the highest levels of sequence similarity were with Thermomonas brevis LMG 21746T (98.4 %), Thermomonas fusca LMG 21737T (97.7 %), Thermomonas haemolytica A50-7-3T (96.5 %) and Thermomonas hydrothermalis SGM-6T (95.8 %). Chemotaxonomic data revealed that strain Ko06T possesses ubiquinone Q-8 and that the predominant fatty acids are C15 : 0 iso, C11 : 0 iso and C11 : 0 iso 3-OH, all of which corroborated assignment of the strain to the genus Thermomonas. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain Ko06T represents a distinct species. On the basis of these data, strain Ko06T (=KCTC 12540T=NBRC 101155T) should be classified as the type strain of a novel Thermomonas species, for which the name Thermomonas koreensis sp. nov. is proposed.


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1756-1762 ◽  
Author(s):  
Yi Liu ◽  
Jiang-Tao Qiao ◽  
Xian-Zheng Yuan ◽  
Rong-Bo Guo ◽  
Yan-Ling Qiu

An anaerobic, spore-forming, ethanol-hydrogen-coproducing bacterium, designated LX-BT, was isolated from an anaerobic sludge treating herbicide wastewater. Cells of strain LX-BT were non-motile rods (0.3–0.5×3.0–18.0 µm). Spores were terminal with a bulged sporangium. Growth occurred at 20–50 °C (optimum 37–45 °C), pH 5.0–8.0 (optimum pH 6.0–7.7) and 0–2.5 % (w/v) NaCl. The strain could grow fermentatively on glucose, maltose, arabinose, fructose, xylose, ribose, galactose, mannose, raffinose, sucrose, pectin, starch, glycerol, fumarate, tryptone and yeast extract. The major end-products of glucose fermentation were acetate, ethanol and hydrogen. Yeast extract was not required but stimulated growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, anthraquinone-2,6-disulfonate, fumarate and Fe (III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of the genomic DNA was 56.1 mol%. The major cellular fatty acids were anteiso-C15 : 0, iso-C14 : 0 and C16 : 0. The most abundant polar lipids of strain LX-BT were diphosphatidylglycerol and phosphatidylglycerol. 16S rRNA gene sequence analysis revealed that it belongs to an as-yet-unidentified taxon at the order- or class-level (OPB54) within the phylum Firmicutes , showing 86.5 % sequence similarity to previously described species of the Desulfotomaculum cluster. The name Hydrogenispora ethanolica gen. nov., sp. nov. is proposed to accommodate strain LX-BT ( = DSM 25471T = JCM 18117T = CGMCC 1.5175T) as the type strain.


2006 ◽  
Vol 56 (11) ◽  
pp. 2689-2692 ◽  
Author(s):  
Seung-Hee Yoo ◽  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Soon-Wo Kwon ◽  
...  

A Gram-negative, obligately aerobic, rod-shaped bacterium was isolated from greenhouse soil used to cultivate lettuce. The strain, GH2-10T, was characterized on the basis of phenotypic and genotypic data. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Devosia, with highest sequence similarity (98.5 %) to Devosia riboflavina IFO 13584T. Sequence similarities with other strains tested were below 97.0 %. Strain GH2-10T had Q-10 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 59.5 mol%. The results of DNA–DNA hybridization experiments (47 % relatedness between D. riboflavina DSM 7230T and strain GH2-10T) and physiological and biochemical tests suggested that strain GH2-10T represents a novel species of the genus Devosia, for which the name Devosia soli sp. nov. is proposed. The type strain is GH2-10T (=KACC 11509T=DSM 17780T).


Sign in / Sign up

Export Citation Format

Share Document