Gaetbulibacter lutimaris sp. nov., isolated from a tidal flat sediment

2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 995-1000 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Soo-Young Lee ◽  
Tae-Kwang Oh

A Gram-stain-negative, aerobic, non-flagellated, non-gliding, rod-shaped bacterial strain, D1-y4T, was isolated from a tidal flat sediment of the South Sea in South Korea and subjected to a polyphasic study. Strain D1-y4T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain D1-y4T belonged to the genus Gaetbulibacter , joining the type strain of Gaetbulibacter marinus, with which it exhibited 97.8 % similarity. Sequence similarities to Gaetbulibacter saemankumensis SMK-12T and Gaetbulibacter aestuarii KYW382T were 96.5 and 96.2 %, respectively. Strain D1-y4T contained MK-6 as the predominant menaquionone and iso-C15 : 0, iso-C15 : 1 G and anteiso-C15 : 0 as the major fatty acids. The major polar lipids were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain D1-y4T was 34.6 mol% and its mean DNA–DNA relatedness value with G. marinus KCTC 23046T was 7 %. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain D1-y4T is distinguishable from the three recognized Gaetbulibacter species. On the basis of the data presented here, strain D1-y4T is considered to represent a novel species of the genus Gaetbulibacter , for which the name Gaetbulibacter lutimaris sp. nov. is proposed. The type strain is D1-y4T ( = KCTC 23716T  = CCUG 61504T).

2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2618-2624 ◽  
Author(s):  
Sooyeon Park ◽  
Ja-Min Park ◽  
Keun-Chul Lee ◽  
Kyung Sook Bae ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-motile and pleomorphic (coccoid, ovoid or rod-shaped) bacterial strain, BS-W15T, isolated from a tidal flat sediment at Boseong in South Korea, was characterized taxonomically. Strain BS-W15T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of approximately 2.0 % (w/v) NaCl. Neighbour-joining and maximum-likelihood phylogenetic trees, based on 16S rRNA gene sequences, revealed that strain BS-W15T joined the cluster comprising the type strains of Profundibacterium mesophilum , Hwanghaeicola aestuarii , M. pelagius and M. salinus , showing 93.5–96.4 % sequence similarities. Strain BS-W15T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The polar lipid profile of strain BS-W15T contained phosphatidylcholine and phosphatidylglycerol as major components, differentiating it from those of the type strains of P. mesophilum , H. aestuarii , M. pelagius and M. salinus . The DNA G+C content of strain BS-W15T was 58.7 mol%. The differential phenotypic properties, together with the phylogenetic and chemotaxonomic data, demonstrate that strain BS-W15T is distinct from type strains of P. mesophilum , H. aestuarii , M. pelagius and M. salinus . On the basis of the data presented, strain BS-W15T is considered to represent a novel genus and species, for which the name Boseongicola aestuarii gen. nov., sp. nov. is proposed. The type strain is BS-W15T ( = KCTC 32576T = CECT 8489T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


Author(s):  
Yang Liu ◽  
Tao Pei ◽  
Juan Du ◽  
Meijie Chao ◽  
Ming-Rong Deng ◽  
...  

A novel Gram-stain-negative, facultatively anaerobic, rod-shaped and non-motile bacterial strain, designated as 4C16AT, was isolated from a tidal flat sediment and characterized by using a polyphasic taxonomic approach. Strain 4C16AT was found to grow at 10–40 °C (optimum, 28 °C), at pH 5.0–10.0 (optimum, pH 6.0–7.0) and in 0–6 % (w/v) NaCl (optimum, 1 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 4C16AT fell into the genus Roseibium , and shared the highest identity of 98.9 % with the closest type strain Roseibium suaedae KACC 13772T and less than 98.0 % identity with other type strains of recognized species within this genus. The phylogenomic analysis indicated that strain 4C16AT formed an independent branch within this genus. The 28.6 % digital DNA–DNA hybridization estimate and 85.0 % average nucleotide identity between strains 4C16AT and R. suaedae KACC 13772T were the highest, but still far below their respective threshold for species definition, implying that strain 4C16AT should represent a novel genospecies. The predominant cellular fatty acid was summed feature 8; the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylethanolamine; the respiratory quinones were Q-9 and Q-10. The genomic DNA G+C content was 59.8mol %. Based on phylogenetic analyses and phenotypic and chemotaxonomic characteristics, strain 4C16AT is concluded to represent a novel species of the genus Roseibium , for which the name Roseibium litorale sp. nov. is proposed. The type strain of the species is 4C16AT (=GDMCC 1.1932T=KACC 22078T). We also propose the reclassification of Labrenzia polysiphoniae as Roseibium polysiphoniae comb. nov. and ‘Labrenzia callyspongiae’ as Roseibium callyspongiae sp. nov.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1001-1006 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped bacterial strain, BB-Mw22T, was isolated from a tidal flat sediment of the South Sea in South Korea. It grew optimally at 30–37 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain BB-Mw22T belonged to the genus Kangiella and the cluster comprising Kangiella species and strain BB-Mw22T was clearly separated from other taxa. Strain BB-Mw22T exhibited 95.3–98.7 % 16S rRNA gene sequence similarity to the type strains of recognized Kangiella species. Strain BB-Mw22T contained Q-8 as the predominant ubiquionone and iso-C15 : 0 and iso-C11 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and one unidentified aminolipid. The DNA G+C content of strain BB-Mw22T was 48.9 mol%, and its mean DNA–DNA hybridization values with Kangiella geojedonensis YCS-5T, Kangiella japonica JCM 16211T and Kangiella taiwanensis JCM 17727T were 14–28 %. Phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain BB-Mw22T is distinguishable from all recognized Kangiella species. On the basis of the data presented, strain BB-Mw22T is considered to represent a novel species of the genus Kangiella , for which the name Kangiella sediminilitoris sp. nov. is proposed. The type strain is BB-Mw22T ( = KCTC 23892T  = CCUG 62217T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1841-1846 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic, curved-to-spiral-rod-shaped bacterium, designated AH-MY2T, was isolated from a tidal flat on Aphae island in the sea to the south-west of South Korea, and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain AH-MY2T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain AH-MY2T clustered with the type strain of Terasakiella pusilla and that this cluster joined the clade comprising the type strains of species of the genus Thalassospira . Strain AH-MY2T exhibited 16S rRNA gene sequence similarity values of 90.6 % to the type strain of Terasakiella pusilla and of less than 91.0 % to the type strains of other species with validly published names. Strain AH-MY2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids detected in strain AH-MY2T were phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminolipids and one unidentified glycolipid. The DNA G+C content of strain AH-MY2T was 56.0 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain AH-MY2T represented a novel genus and species within the family Rhodospirillaceae of the class Alphaproteobacteria , for which the name Aestuariispira insulae gen. nov., sp. nov. is proposed. The type strain of Aestuariispira insulae is AH-MY2T ( = KCTC 32577T = CECT 8488T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1741-1745 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-negative, motile and ovoid- to rod-shaped bacterial strain, designated M-M10T, was isolated from a seashore sediment collected from the South Sea, South Korea. Strain M-M10T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M10T clustered with the type strains of Roseovarius crassostreae , Roseovarius halocynthiae and Roseovarius marinus , with which it exhibited sequence similarities of 97.4, 97.3 and 95.1 %, respectively. It exhibited 93.2–95.1 % sequence similarity to the type strains of the other species of the genus Roseovarius . Strain M-M10T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids, as observed in the genus Roseovarius . The polar lipid profile of strain M-M10T was similar to that of Roseovarius tolerans DSM 11457T. The DNA G+C content of strain M-M10T was 63.0 mol% and its mean DNA–DNA relatedness values with Roseovarius crassostreae DSM 16950T and Roseovarius halocynthiae MA1-10T were 16 % and 22 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain M-M10T is distinct from other species of the genus Roseovarius . On the basis of the data presented, strain M-M10T is considered to represent a novel species of the genus Roseovarius , for which the name Roseovarius sediminilitoris sp. nov. is proposed. The type strain is M-M10T ( = KCTC 23959T = CCUG 62413T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 3943-3949 ◽  
Author(s):  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-stain-negative, coccoid- or oval-shaped, gliding bacterial strain, designated HDW-31T, belonging to the class Alphaproteobacteria , was isolated from seawater of the Yellow Sea, Korea, and was subjected to a taxonomic study using a polyphasic approach. Strain HDW-31T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain HDW-31T fell within the clade comprising the genus Altererythrobacter , clustering with the type strains of Altererythrobacter luteolus and Altererythrobacter gangjinensis , with which strain HDW-31T exhibited 97.0 and 96.0 % sequence similarity values, respectively. Sequence similarities to the type strains of the other recognized species of the genus Altererythrobacter were 93.5–96.0 %. The DNA G+C content was 57.9 mol% and mean DNA–DNA relatedness between strain HDW-31T and the type strain of A. luteolus was 5.3 %. Strain HDW-31T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C16 : 0 as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, a sphingoglycolipid, two unidentified glycolipids and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain HDW-31T is distinguishable from recognized species of the genus Altererythrobacter . On the basis of the data presented, strain HDW-31T is considered to represent a novel species of the genus Altererythrobacter , for which the name Altererythrobacter aestiaquae sp. nov. is proposed. The type strain is HDW-31T ( = KCTC 42006T = CECT 8527T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2969-2974 ◽  
Author(s):  
Sooyeon Park ◽  
Sung-Min Won ◽  
Hyangmi Kim ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, BS-B2T, which was isolated from a tidal flat sediment at Boseong in South Korea, was characterized taxonomically. Strain BS-B2T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The novel strain exhibited highest 16S rRNA gene sequence similarity (97.4 %) to Marivita geojedonensis DPG-138T. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain BS-B2T is closely related to Primorskyibacter sedentarius KMM 9018T, showing 96.5 % sequence similarity. Strain BS-B2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The polar lipid profile of strain BS-B2T comprised phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid as major components, and differentiated it from the type strains of P. sedentarius and M. geojedonensis . The DNA G+C content of strain BS-B2T was 62.2 mol%. Differential phenotypic properties, together with the phylogenetic and chemotaxonomic data, demonstrated that strain BS-B2T can be distinguished from phylogenetically related genera as well as P. sedentarius and M. geojedonensis . On the basis of the data presented, strain BS-B2T is considered to represent a novel species of a new genus, for which the name Aestuariivita boseongensis gen. nov., sp. nov. is proposed. The type strain of Aestuariivita boseongensis is BS-B2T ( = KCTC 42052T = CECT 8532T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1509-1514 ◽  
Author(s):  
Sung-Min Won ◽  
Sooyeon Park ◽  
Ji-Min Park ◽  
Byung-Chan Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and coccoid, ovoid or rod-shaped bacterial strain, designated BS-W9T, was isolated from a tidal flat of the South Sea, South Korea. Strain BS-W9T grew optimally at 25–30 °C, at pH 7.0–8.0 and in the presence of approximately 2.0 % (w/v) NaCl. Phylogenetic trees, based on 16S rRNA gene sequences, revealed that strain BS-W9T clustered with the type strain of Halocynthiibacter namhaensis , showing a highest sequence similarity of 97.3 %. It exhibited sequence similarity values of less than 95.6 % to the type strains of other species with validly published names. Strain BS-W9T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The major polar lipids of strain BS-W9T were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, one unidentified lipid and one unidentified aminolipid. The fatty acid and polar lipid profiles of strain BS-W9T were distinguished from those of the type strains of H. namhaensis and other phylogenetically related genera. The DNA G+C content of strain BS-W9T was 53.2 mol% and its mean DNA–DNA relatedness value with H. namhaensis RA2-3T was 14 %. On the basis of the phylogenetic, chemotaxonomic and other phenotypic properties, strain BS-W9T is considered to represent a novel genus and species within the family Rhodobacteraceae , for which the name Pseudohalocyntiibacter aestuariivivens gen. nov., sp. nov. is proposed. The type strain of Pseudohalocyntiibacter aestuariivivens is BS-W9T ( = KCTC 42348T = CECT 8726T).


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1027-1031 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-flagellated, non-gliding and short rod- or rod-shaped bacterial strain, designated BB-My20T, was isolated from tidal flat sediment taken from the southern coast of Korea. Strain BB-My20T grew optimally at 37 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A phylogenetic tree based on 16S rRNA gene sequences showed that strain BB-My20T fell within the clade comprising Salinimicrobium species, joining Salinimicrobium catena HY1T, with which it had a 16S rRNA gene sequence similarity value of 97.4 %. It exhibited 95.4–96.9 % sequence similarity to the type strains of other members of the genus Salinimicrobium . Strain BB-My20T contained MK-6 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain BB-My20T and S. catena JCM 14015T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain BB-My20T was 45.1 mol% and its mean DNA–DNA relatedness value with S. catena JCM 14015T was 4.5 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain BB-My20T can be distinguished from the four recognized species of the genus Salinimicrobium . On the basis of the data presented, strain BB-My20T is considered to represent a novel species of the genus Salinimicrobium , for which the name Salinimicrobium gaetbulicola sp. nov. is proposed; the type strain is BB-My20T ( = KCTC 23579T = CCUG 60898T).


Sign in / Sign up

Export Citation Format

Share Document