scholarly journals Pseudohalocynthiibacter aestuariivivens gen. nov., sp. nov., isolated from a tidal flat

2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1509-1514 ◽  
Author(s):  
Sung-Min Won ◽  
Sooyeon Park ◽  
Ji-Min Park ◽  
Byung-Chan Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and coccoid, ovoid or rod-shaped bacterial strain, designated BS-W9T, was isolated from a tidal flat of the South Sea, South Korea. Strain BS-W9T grew optimally at 25–30 °C, at pH 7.0–8.0 and in the presence of approximately 2.0 % (w/v) NaCl. Phylogenetic trees, based on 16S rRNA gene sequences, revealed that strain BS-W9T clustered with the type strain of Halocynthiibacter namhaensis , showing a highest sequence similarity of 97.3 %. It exhibited sequence similarity values of less than 95.6 % to the type strains of other species with validly published names. Strain BS-W9T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The major polar lipids of strain BS-W9T were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, one unidentified lipid and one unidentified aminolipid. The fatty acid and polar lipid profiles of strain BS-W9T were distinguished from those of the type strains of H. namhaensis and other phylogenetically related genera. The DNA G+C content of strain BS-W9T was 53.2 mol% and its mean DNA–DNA relatedness value with H. namhaensis RA2-3T was 14 %. On the basis of the phylogenetic, chemotaxonomic and other phenotypic properties, strain BS-W9T is considered to represent a novel genus and species within the family Rhodobacteraceae , for which the name Pseudohalocyntiibacter aestuariivivens gen. nov., sp. nov. is proposed. The type strain of Pseudohalocyntiibacter aestuariivivens is BS-W9T ( = KCTC 42348T = CECT 8726T).

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1841-1846 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic, curved-to-spiral-rod-shaped bacterium, designated AH-MY2T, was isolated from a tidal flat on Aphae island in the sea to the south-west of South Korea, and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain AH-MY2T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain AH-MY2T clustered with the type strain of Terasakiella pusilla and that this cluster joined the clade comprising the type strains of species of the genus Thalassospira . Strain AH-MY2T exhibited 16S rRNA gene sequence similarity values of 90.6 % to the type strain of Terasakiella pusilla and of less than 91.0 % to the type strains of other species with validly published names. Strain AH-MY2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids detected in strain AH-MY2T were phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminolipids and one unidentified glycolipid. The DNA G+C content of strain AH-MY2T was 56.0 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain AH-MY2T represented a novel genus and species within the family Rhodospirillaceae of the class Alphaproteobacteria , for which the name Aestuariispira insulae gen. nov., sp. nov. is proposed. The type strain of Aestuariispira insulae is AH-MY2T ( = KCTC 32577T = CECT 8488T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 3943-3949 ◽  
Author(s):  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-stain-negative, coccoid- or oval-shaped, gliding bacterial strain, designated HDW-31T, belonging to the class Alphaproteobacteria , was isolated from seawater of the Yellow Sea, Korea, and was subjected to a taxonomic study using a polyphasic approach. Strain HDW-31T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain HDW-31T fell within the clade comprising the genus Altererythrobacter , clustering with the type strains of Altererythrobacter luteolus and Altererythrobacter gangjinensis , with which strain HDW-31T exhibited 97.0 and 96.0 % sequence similarity values, respectively. Sequence similarities to the type strains of the other recognized species of the genus Altererythrobacter were 93.5–96.0 %. The DNA G+C content was 57.9 mol% and mean DNA–DNA relatedness between strain HDW-31T and the type strain of A. luteolus was 5.3 %. Strain HDW-31T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C16 : 0 as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, a sphingoglycolipid, two unidentified glycolipids and an unidentified lipid. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain HDW-31T is distinguishable from recognized species of the genus Altererythrobacter . On the basis of the data presented, strain HDW-31T is considered to represent a novel species of the genus Altererythrobacter , for which the name Altererythrobacter aestiaquae sp. nov. is proposed. The type strain is HDW-31T ( = KCTC 42006T = CECT 8527T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 839-843 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
...  

A Gram-stain-negative, non-motile, non-spore-forming, aerobic, rod-shaped bacterial strain, designated DPG-28T, was isolated from seawater on the southern coast of Korea. Strain DPG-28T grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DPG-28T formed a coherent cluster with members of the genera Marivita and Gaetbulicola , with which it exhibited sequence similarity values of 97.8–98.5 %. The DNA G+C content of strain DPG-28T was 65.1 mol%. The predominant ubiquinone of strain DPG-28T was ubiquinone-10 (Q-10), consistent with data for the genera Marivita and Gaetbulicola . The cellular fatty acid profiles of strain DPG-28T and the type strains of Marivita cryptomonadis , Marivita litorea and Gaetbulicola byunsanensis were essentially similar in that the common predominant fatty acid was C18 : 1ω7c. Major polar lipids found in strain DPG-28T and the type strains of M. cryptomonadis , M. litorea and G. byunsanensis were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid. From these data, it is proposed that Gaetbulicola byunsanensis be reclassified as a member of the genus Marivita , for which the name Marivita byunsanensis comb. nov. is proposed, with the type strain SMK-114T ( = CCUG 57612T  = KCTC 22632T), and that strain DPG-28T be classified in the genus Marivita . Differential phenotypic properties and genetic distinctiveness of strain DPG-28T demonstrated that this strain is distinguishable from M. cryptomonadis , M. litorea and G. byunsanensis . On the basis of the data presented, strain DPG-28T is considered to represent a novel species of the genus Marivita , for which the name Marivita hallyeonensis sp. nov. is proposed. The type strain is DPG-28T ( = KCTC 23421T  = CCUG 60522T). An emended description of the genus Marivita is also provided.


2020 ◽  
Vol 70 (12) ◽  
pp. 6301-6306
Author(s):  
Sooyeon Park ◽  
Seo Yeon Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M23T, was isolated from tidal flat sediment collected from the Yellow Sea, Republic of Korea. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M23T fell within the clade comprising the type strains of Pseudoalteromonas species, clustering with the type strains of P. byunsanensis and P. amylolytica . Strain JBTF-M23T exhibited the highest 16S rRNA gene sequence similarity value (98.6 %) to the type strain of P. rubra and sequence similarities of 98.3 and 97.7 % to the type strains of P. byunsanensis and P. amylolytica, respectively. The DNA G+C content of strain JBTF-M23T from genomic sequence data was 41.98 %. The ANI and dDDH values between strain JBTF-M23T and the type strains of P. rubra , P. byunsanensis and P. amylolytica were 71.3–76.6 and 19.4–19.9 %, respectively. Strain JBTF-M23T contained Q-8 as the predominant ubiquinone and C16 : 1  ω7c and/or C16 : 1  ω6c, C16 : 0 and C18 : 1  ω7c as the major fatty acids. The major polar lipids of strain JBTF-M23T were phosphatidylethanolamine and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M23T is separated from recognized Pseudoalteromonas species. On the basis of the data presented, strain JBTF-M23Tis considered to represent a novel species of the genus Pseudoalteromonas , for which the name Pseudoalteromonas caenipelagi sp. nov. is proposed. The type strain is JBTF-M23T(=KACC 19900T=NBRC 113647T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1001-1006 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped bacterial strain, BB-Mw22T, was isolated from a tidal flat sediment of the South Sea in South Korea. It grew optimally at 30–37 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain BB-Mw22T belonged to the genus Kangiella and the cluster comprising Kangiella species and strain BB-Mw22T was clearly separated from other taxa. Strain BB-Mw22T exhibited 95.3–98.7 % 16S rRNA gene sequence similarity to the type strains of recognized Kangiella species. Strain BB-Mw22T contained Q-8 as the predominant ubiquionone and iso-C15 : 0 and iso-C11 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and one unidentified aminolipid. The DNA G+C content of strain BB-Mw22T was 48.9 mol%, and its mean DNA–DNA hybridization values with Kangiella geojedonensis YCS-5T, Kangiella japonica JCM 16211T and Kangiella taiwanensis JCM 17727T were 14–28 %. Phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain BB-Mw22T is distinguishable from all recognized Kangiella species. On the basis of the data presented, strain BB-Mw22T is considered to represent a novel species of the genus Kangiella , for which the name Kangiella sediminilitoris sp. nov. is proposed. The type strain is BB-Mw22T ( = KCTC 23892T  = CCUG 62217T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1876-1881 ◽  
Author(s):  
Sooyeon Park ◽  
Sung-Min Won ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, AH-M5T, which was isolated from a tidal flat sediment at Aphae Island in South Korea, was characterized taxonomically. Strain AH-M5T grew optimally at 25 °C, at pH 7.0–8.0 and in presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain AH-M5T clustered coherently with the type strains of Mangrovimonas yunxiaonensis and Meridianimaribacter flavus , showing 93.4–94.3 % sequence similarity. The novel strain exhibited 16S rRNA gene sequence similarity values of less than 93.4 % to the type strains of other recognized species. Strain AH-M5T contained MK-6 as the predominant menaquinone and iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The polar lipid profile of strain AH-M5T containing phosphatidylethanolamine and one unidentified lipid as major components was differentiated from those of the type strains of Mangrovimonas yunxiaonensis and Meridianimaribacter flavus . The DNA G+C content of strain AH-M5T was 34.8 mol%. Differential phenotypic properties, together with the phylogenetic and chemotaxonomic data, demonstrated that strain AH-M5T is distinguished from Mangrovimonas yunxiaonensis and Meridianimaribacter flavus . On the basis of the data presented, strain AH-M5T is considered to represent a novel genus and species within the family Flavobacteriaceae , for which the name Seonamhaeicola aphaedonensis gen. nov., sp. nov. is proposed. The type strain of the type species is AH-M5T ( = KCTC 32578T = CECT 8487T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1672-1678 ◽  
Author(s):  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Sung-Min Won ◽  
Ji-Min Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and coccoid, ovoid or rod-shaped bacterial strain, W-BA2T, was isolated from a brown algae reservoir in Wando of South Korea. Strain W-BA2T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of approximately 2.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain W-BA2T fell within the clade comprising the type strains of species of the genus Sulfitobacter , clustering coherently with the type strains of Sulfitobacter donghicola and Sulfitobacter guttiformis showing sequence similarity values of 98.0–98.1 %. Sequence similarities to the type strains of the other species of the genus Sulfitobacter were 96.0–97.4 %. Strain W-BA2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain W-BA2T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain W-BA2T was 55.0 mol% and its DNA–DNA relatedness values with the type strains of Sulfitobacter donghicola , Sulfitobacter guttiformis and Sulfitobacter mediterraneus were 16–23 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain W-BA2T is separated from other species of the genus Sulfitobacter . On the basis of the data presented, strain W-BA2T is considered to represent a novel species of the genus Sulfitobacter , for which the name Sulfitobacter undariae sp. nov. is proposed. The type strain is W-BA2T ( = KCTC 42200T = NBRC 110523T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1741-1745 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-negative, motile and ovoid- to rod-shaped bacterial strain, designated M-M10T, was isolated from a seashore sediment collected from the South Sea, South Korea. Strain M-M10T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M10T clustered with the type strains of Roseovarius crassostreae , Roseovarius halocynthiae and Roseovarius marinus , with which it exhibited sequence similarities of 97.4, 97.3 and 95.1 %, respectively. It exhibited 93.2–95.1 % sequence similarity to the type strains of the other species of the genus Roseovarius . Strain M-M10T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids, as observed in the genus Roseovarius . The polar lipid profile of strain M-M10T was similar to that of Roseovarius tolerans DSM 11457T. The DNA G+C content of strain M-M10T was 63.0 mol% and its mean DNA–DNA relatedness values with Roseovarius crassostreae DSM 16950T and Roseovarius halocynthiae MA1-10T were 16 % and 22 %, respectively. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain M-M10T is distinct from other species of the genus Roseovarius . On the basis of the data presented, strain M-M10T is considered to represent a novel species of the genus Roseovarius , for which the name Roseovarius sediminilitoris sp. nov. is proposed. The type strain is M-M10T ( = KCTC 23959T = CCUG 62413T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1684-1689 ◽  
Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-flagellated, coccoid-, oval- or rod-shaped strain, designated M-M23T, was isolated from seashore sediment at Geoje island, South Korea. Strain M-M23T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M23T clustered with the type strains of the two species of the genus Hirschia , with which it exhibited 97.6–98.1 % 16S rRNA gene sequence similarity. Sequence similarity with the type strains of other recognized species was <90.8 %. Strain M-M23T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain M-M23T were phosphatidylglycerol and two unidentified lipids. The DNA G+C content of strain M-M23T was 45.4 mol%. DNA–DNA relatedness between the isolate and Hirschia baltica DSM 5838T and Hirschia maritima JCM 14974T was 22±7.2 and 14±5.6 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain M-M23T is separate from the other described members of the genus Hirschia . On the basis of the data presented, strain M-M23T is considered to represent a novel species of the genus Hirschia , for which the name Hirschia litorea sp. nov. is proposed. The type strain is M-M23T ( = KCTC 32081T  = CCUG 62793T). An emended description of the genus Hirschia is also provided.


Sign in / Sign up

Export Citation Format

Share Document