polar lipid profile
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 84)

H-INDEX

30
(FIVE YEARS 8)

Author(s):  
Veeraya Weerawongwiwat ◽  
Jong-Hwa Kim ◽  
Jung-Hoon Yoon ◽  
Jung-Sook Lee ◽  
Ampaitip Sukhoom ◽  
...  

A novel Gram-negative, aerobic, non-motile, rod-shaped, bacterial strain (CAU 1598T) was isolated from marine sand. Strain CAU 1598T grew well at 30 °C, pH 6.5–7.0 and with 3 % NaCl (w/v). Phylogeny results based on 16S rRNA gene sequencing indicated that the identified strain had the highest similarity (94.3%) to Pseudoxanthomonas putridarboris , indicating that strain CAU 1598T belongs to the family Xanthomonadaceae . Further, the fatty acid profile of the strain was primarily composed of C16:0, iso-C15 : 0, iso-C16 : 0, summed feature 3 (consisting of C16 : 1  ω7c/iso-C15 : 0 2-OH) and summed feature 9 (consisting of iso-C17 : 1  ω9c and/or C16 : 0 10-methyl), with ubiquinone-8 as the major isoprenoid quinone. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphoglycolipid, an unidentified aminolipid and an unidentified lipid. The G+C content of the bacterial genome was 62.6 mol% and its 5.4 Mb length encompassed 144 contigs and 4236 protein-coding genes. These phenotypic, chemotaxonomic and phylogenetic data indicate that CAU 1598T belongs to a new genus and species, for which the name Pseudomarimonas arenosa gen. nov., sp. nov. is proposed. The type strain is CAU 1598T (=KCTC 82406T=MCCC 1K05673T).


Author(s):  
Peter Kämpfer ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Meina Neumann-Schaal ◽  
Alexis Criscuolo ◽  
...  

A Gram-positive, non-spore-forming actinobacterium (IMT-300T) was isolated from soil amended with humic acid in Malvern, AL, USA. This soil has been used for 50+years for the cultivation of earthworms for use as fish bait. Based on 16S rRNA gene sequence similarity studies, strain IMT-300T was shown to belong to the genus Leucobacter and was closely related to the type strain of ‘Leucobacter margaritiformis’ L1T (97.8%). Similarity to all other type strains of Leucobacter species was lower than 97.2 %. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the IMT-300T genome assembly and those of the closest relative Leucobacter type strain were 81.4 and 23.3 % ( Leucobacter chironomi ), respectively. The peptidoglycan of strain IMT-300T contained l-2,4-diaminobutyric acid as the diagnostic diamino acid. In addition, glycine, d- and l-alanine and d-glutamic acid were found. The peptidoglycan type represents a variant of B2δ (B11). The major quinones were menaquinones MK-10 and MK-11. The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and moderate to minor amounts of two unidentified phospholipids, two unidentified glycolipids and an unidentified aminophospholipid. The polyamine pattern contained major amounts of spermidine and spermine. Strain IMT-300T contained the major fatty acids C15 : 0 anteiso, C16 : 0 iso and C17 : 0 anteiso, like other members of the genus Leucobacter . The results of ANI and dDDH analyses and physiological and biochemical tests allowed a genotypic and phenotypic differentiation of strain IMT-300T from the most closely related Leucobacter species. Strain IMT-300T represents a novel Leucobacter species, for which we propose the name Leucobacter soli sp. nov., with the type strain IMT-300T (CIP 111803T=DSM 110505T=CCM 9020T=LMG 31600T).


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 670
Author(s):  
Sanaullah Tareen ◽  
Chandra Risdian ◽  
Mathias Müsken ◽  
Joachim Wink

A novel Gram-negative, aerobic, motile, lemon-yellow-colored, and non-spore-forming rod-shaped bacterium designated strain NZ-12BT was isolated in February 2021 from a sponge species (Crateromorpha) collected at the southern Kermadec Ridge, Pacific Ocean, New Zealand. Comparative 16S rRNA gene-based analyses indicated that strain NZ-12BT shared 98.58%, 96.44%, 96.23%, and 94.78% 16S rRNA sequence similarity to Alteriqipengyuania lutimaris S-5T, Qipengyuania pelagi UST081027-248T, Qipengyuania citreus RE35F/1T, and Alteriqipengyuania halimionae CPA5T, respectively. The major respiratory quinone was ubiquinone-10(Q-10). The polar lipid profile of NZ-12BT was composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyl-N-methyl-ethanolamine, phosphatidylcholine, sphingoglycolipid, phosphatidylglycerol, one unknown polar lipid, three unknown phospholipids, and three unknown glycolipids. The major fatty acids of strain NZ-12BT were C18:1ω12t, C16:0, C17:1ω6c, and C14:02-OH. Carotenoids were present. Genome mining analysis revealed a biosynthetic gene cluster encoding for the terpene biosynthesis. Pairwise ANI and dDDH values of strain NZ-12BT and closely related phylogenetic neighbors were below the threshold values of 95% and 70%, respectively. The DNA G+C content was 65.4 mol% (by genome). Based on data obtained by a polyphasic approach, type strain NZ-12BT (=DSM 112810T = NCCB 100841T) represents a novel species of the genus Alteriqipengyuania, for which the name Alteriqipengyuania abyssalis sp. nov. is proposed.


Author(s):  
Qin Yang ◽  
Pu-Yu Guo ◽  
Elena Y. Abidueva ◽  
Fei-Na Li ◽  
Chun-mei Xue ◽  
...  

A Gram-stain-positive, aerobic, non-motile, non-spore-forming and coccus-shaped strain, designated strain G463T, was isolated from the rhizosphere soil of Salicornia europaea L. collected from Lake Gudzhirganskoe in Siberia. Based on 16S rRNA gene phylogeny, strain G463T belonged to the genus Hoyosella , with the highest 16S rRNA gene sequence similarity to Hoyosella altamirensis DSM 45258T (96.1%). The major fatty acids were C17:1 ω8c, C16:0, C15 : 0 and C17:0. The strain contained meso-diaminopimelic acid as the cell-wall diagnostic diamino acid and arabinose, galactose and ribose as the whole-cell sugars. MK-8 and MK-7 were the predominant menaquinones. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, one unidentified phosphoglycolipid, two unidentified glycolipids and several unidentified lipids. Acetyl was the muramyl residue. Mycolic acids (C28–C34) were present. The G+C content of the genomic DNA was 68.3 mol%. Based on its phylogenetic, phenotypic and chemotaxonomic features, strain G463T was considered to represent a novel species of the genus Hoyosella , for which the name Hoyosella lacisalsi sp. nov. is proposed. The type strain is G463T (=JCM 33650T=CGMCC 1.17230T).


Author(s):  
Yongping Zhang ◽  
Xiaoya Peng ◽  
Kun Qin ◽  
Jia Liu ◽  
Qiang Xu ◽  
...  

Strain Q3-56T, isolated from Arctic tundra soil, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain Q3-56T grew optimally at pH 7.0 and 28 °C. The strain could tolerate up to 1 % (w/v) NaCl with optimum growth in the absence of NaCl. The strain was not sensitive to oxacillin and ceftazidime. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Q3-56T belonged to the genus Dyadobacter . Strain Q3-56T showed the highest sequence similarities to Dyadobacter luticola T17T (96.58 %), Dyadobacter ginsengisoli Gsoil 043T (96.50 %), Dyadobacter flavalbus NS28T (96.43 %) and Dyadobacter bucti QTA69T (96.43 %). The predominant respiratory isoprenoid quinone was identified as MK-7, The polar lipid profile of strain Q3-56T was found to contain one phosphatidylethanolamine, three unidentified aminolipids, three unidentified lipids and one unidentified phospholipid. The G+C content of the genomic DNA was determined to be 49.1 mol%. The main fatty acids were summed feature 3 (comprising C16 : 1  ω7c/C16 : 1  ω6c), iso-C15 : 0, C16 : 1  ω5c and iso-C16 : 1 3-OH. On the basis of the evidence presented in this study, a novel species of the genus Dyadobacter , Dyadobacter sandarakinus sp. nov., is proposed, with the type strain Q3-56T (=CCTCC AB 2019271T=KCTC 72739T). Emended descriptions of Dyadobacter alkalitolerans , Dyadobacter koreensis and Dyadobacter psychrophilus are also provided.


2021 ◽  
Author(s):  
Yimin Pan ◽  
Qiaoqiao Ren ◽  
Lingyun Chen ◽  
Yunxia Jiang ◽  
Jiguo Wu ◽  
...  

Abstract A Gram-positive, non-motile, non-spore-forming and short rod-shaped actinomycete strain, designated GA224T, was isolated from an electronic waste associated bioaerosols. The isolate is facultatively anaerobic, which is able to grow at 25–40 ℃ (optimum 37 ℃) and pH 6.5–8.5 (optimum 8.0). The diamino acid in the cell wall of strain GA224T is 2,4-diaminobutyric acid (DAB), while major menaquinone is MK-12. The polar lipid profile is composed of diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, unidentified glycolipids and unidentified lipid. The major cellular fatty acid is anteiso-C15:0 and iso-C16:0. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GA224T fell within the genus Yonghaparkia, the highest 16S rRNA gene sequence similarity values (98.60%) being obtained with respect to Yonghaparkia alkaliphile KSL-113T. The draft genome of strain GA224T comprised 2,495,189 bp with a G+C content of 72.17 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain GA224T and phylogenetically related Yonghaparkia species were lower than 95% and 70%, respectively. Based on the phenotypic, chemotaxonomic and genomic data, strain GA224T represents a novel species, for which the name Yonghaparkia aerolata sp. nov. is proposed, with GA224T as the type strain (= GDMCC 1.2165T = JCM 34462T).


Author(s):  
Dan-Feng Liu ◽  
Shao-Qi Chen ◽  
Hong-Fei Wang ◽  
Yuan-Guo Xie ◽  
Rui Gao ◽  
...  

A Gram-stain-positive, non-motile and coccus-shaped bacterium, designated strain LNNU 331112T, was isolated from the composite rhizosphere soil of the halophyte Suaeda aralocaspica (Bunge) Freitag and Schütze, which was collected in Xinjiang, north-west China. Growth occurred at 10–45 °C, pH 6.0–11.0 and in the presence of 0–10 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene sequence suggested that strain LNNU 331112T belonged to the genus Hoyosella and showed 95.6, 95.5 and 95.4 % sequence similarities to Hoyosella altamirensis DSM 45258T, Hoyosella subflava CGMCC 4.3532T and Hoyosella rhizosphaerae CGMCC 1.15478T, respectively. The estimated digital DNA–DNA hybridization relatedness values between strain LNNU 331112T and the type strains of H. altamirensis DSM 45258T, H. subflava CGMCC 4.3532T and H. rhizosphaerae CGMCC 1.15478T were 18.9, 19.3 and 18.3 %, respectively. The average nucleotide identity values between strain LNNU 331112T and H. altamirensis DSM 45258T, H. subflava CGMCC 4.3532T and H. rhizosphaerae CGMCC 1.15478T were 72.6, 72.7 and 72.3 %, respectively. The genome sequence of strain LNNU 331112T showed 69.0–72.3 % average amino acid identity values in comparison with the related genome sequences of three validly published Hoyosella species. The genome of strain LNNU 331112T was 3.47 Mb, with a DNA G+C content of 68.4 mol%. A total of 3182 genes were identified as protein-coding in strain LNNU 331112T. Genomic analysis revealed that a number of genes involved in osmotic pressure regulation, intracellular pH homeostasis and potassium (K+) uptake protein were found in strain LNNU 331112T. The predominant menaquinones were MK-8 (44.6 %) and MK-7 (55.4 %), which differentiated strain LNNU 331112T from other three recognized Hoyosella species. Major fatty acids (>10 %) were C17 : 1 ω8c (33.8 %), C16 : 0 (23.3 %), C17 : 0 (12.8 %) and summed feature 3 (12.9 %), which also clearly separated strain LNNU 331112T from three recognized Hoyosella species. The polar lipid profile of strain LNNU 331112T included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, one unidentified glycolipid, one unidentified phospholipid and two unidentified lipids. According to the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain LNNU 331112T is considered to represent a novel species of the genus Hoyosella , for which the name Hoyosella suaedae sp. nov. is proposed. The type strain is LNNU 331112T (=KCTC 39808T=CGMCC 1.17107T=DSM 103463T).


Author(s):  
Hans-Jürgen Busse ◽  
Peter Kämpfer ◽  
Michael Peter Szostak ◽  
Christian Rückert ◽  
Joachim Spergser

A bacterial strain designated 26BT, which had been isolated from the cloaca of a toad-headed turtle, was subjected to a comprehensive taxonomic study. Comparison of 16S rRNA gene sequences demonstrated that strain 26BT is a member of the family Neisseriaceae . Based on highest similarity values, Neisseria animaloris DSM 21642T (95.15 %), Alysiella filiformis ATCC 15532T (95.06 %), Uruburuella testudinis 07_OD624T (94.71 %), Uruburuella suis CCUG 47806T (94.66 %) and Alysiella crassa DSM 2578T (94.64 %) were identified as the closest relatives. Average nucleotide identity values based on the blast algorithm (ANIb) indicated that U. suis (76.10/76.17 %), Neisseria shayeganii 871T (74.34/74.51 %), Stenoxybacter acetivorans (73.30/73.41 %), N. animaloris (72.98/72.80) %, A. filiformis (71.14/71.21 %) and A. crassa (70.53/71.15 %) are the next closest relatives. Like ANIb, genome-based phylogeny did not suggest the affiliation of strain 26BT with any established genus. The polyamine pattern consisted of the major compounds putrescine, 1,3-diaminopropane and spermidine and the major quinone was ubiquinone Q-8. In the polar lipid profile, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an ornithine lipid were predominant. The fatty acid profile contained predominantly C16 : 1 ω7c, C12 : 0, C14 : 0, C16 : 0 and C12 : 0 3OH. The size of the genome was 2.91 Mbp and the genomic G+C content was 54.0 mol%. Since these data do not demonstrate an unambiguous association with any established genus, we here propose the novel genus Paralysiella with the type species Paralysiella testudinis gen. nov., sp. nov. The type strain is 26BT (=CCM 9137T=LMG 32212T).


Author(s):  
Chih-Horng Kuo ◽  
Pin-Yun Huang ◽  
Shih-Yi Sheu ◽  
Der-Shyan Sheu ◽  
Li-Cheng Jheng ◽  
...  

A novel bacterial strain, designated IPMB12T, isolated from the gut of the superworm Zophobas morio in Taiwan, was characterized using a polyphasic taxonomic approach. Cells were Gram-stain-negative, facultatively anaerobic, non-motile, coccoid or rod-shaped and formed translucent colonies. Optimal growth occurred at 25–37 °C, pH 9–10, and with 0–2 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain IPMB12T is affiliated with genus in the the family Orbaceae in the class Gammaproteobacteria . Strain IPMB12T was most closely related to Gilliamella mensalis LMG 29880T with a 94.6 % 16S rRNA gene sequence similarity. Strain IPMB12T showed less than 71.6 % average nucleotide identity, less than 71.5 % average amino acid identity and less than 21.2 % digital DNA–DNA hybridization identity compared to the strains of related genera within the family Orbaceae . The major fatty acids of strain IPMB12T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C14 : 0. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one uncharacterized phosphoaminoglycolipid and one uncharacterized aminophospholipid. The major isoprenoid quinone was Q-8. Genomic DNA G+C content of strain IPMB12T was 39.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain IPMB12T represents a novel species of a new genus in the family Orbaceae , for which the name Zophobihabitans entericus gen. nov., sp. nov. is proposed. The type strain is IPMB12T (=BCRC 80908T =LMG 32079T=KCTC 82347T=KACC 22323T).


2021 ◽  
Vol 12 ◽  
Author(s):  
Stanislava Králová ◽  
Hans-Jürgen Busse ◽  
Matěj Bezdíček ◽  
Megan Sandoval-Powers ◽  
Markéta Nykrýnová ◽  
...  

Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023T and P7388T were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.


Sign in / Sign up

Export Citation Format

Share Document