Desulfatitalea tepidiphila gen. nov., sp. nov., a sulfate-reducing bacterium isolated from tidal flat sediment

2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 761-765 ◽  
Author(s):  
Yuriko Higashioka ◽  
Hisaya Kojima ◽  
Miho Watanabe ◽  
Manabu Fukui

A novel sulfate-reducing bacterium, strain S28bFT, was isolated from tidal flat sediment from Tokyo Bay, Japan. Cells of strain S28bFT were rod-shaped (0.5–0.6×1.7–3.8 µm), motile and Gram-stain-negative. For growth, the optimum pH was pH 6.8–7.3 and the optimum temperature was 34–42 °C. Strain S28bFT used sulfate and thiosulfate as electron acceptors, but not nitrate. The G+C content of the genomic DNA was 56.6 mol%. The fatty acid profile of strain S28bFT was characterized by the presence of anteiso-C15 : 0 and C16 : 0 as the major components. Phylogenetic analyses based on genes for 16S rRNA, the alpha subunit of dissimilatory sulfite reductase (dsrA) and adenosine-5′-phosphosulfate reductase (aprA) revealed that the isolated strain belonged to the class Deltaproteobacteria . Its closest relative was Desulfosarcina cetonica DSM 7267T with a 16S rRNA gene sequence similarity of 93.3 %. Two other strains, S28OL1 and S28OL2 were also isolated from the same sediment. These strains were closely related to S28bFT with 16S rRNA gene sequence similarities of 99 %, and the same physiological characteristics were shared with strain S28bFT. On the basis of phylogenetic and phenotypic characterization, a novel species in a new genus, Desulfatitalea tepidiphila gen. nov., sp. nov., is proposed to accommodate the strains obtained in this study. The type strain is S28bFT ( = NBRC 107166T = DSM 23472T).

2010 ◽  
Vol 60 (12) ◽  
pp. 2813-2817 ◽  
Author(s):  
Ahyoung Choi ◽  
Jang-Cheon Cho

Two Gram-negative, non-motile, non-pigmented and curved rod-shaped bacterial strains, designated IMCC4489T and IMCC4451, were isolated from a tidal flat sediment of the Yellow Sea. Strains IMCC4489T and IMCC4451 shared 99.9 % 16S rRNA gene sequence similarity and 78.5 % DNA–DNA relatedness, which suggested that they belonged to the same species. The isolates were most closely related to Reinekea blandensis MED297T (98.7–98.8 % 16S rRNA gene sequence similarity) and Reinekea marinisedimentorum DSM 15388T (95.3–95.4 %). DNA–DNA relatedness between the strains and R. blandensis CCUG 52066T was 31–34 %. Strains IMCC4489T and IMCC4451 could also be differentiated from the type strains of the two recognized Reinekea species by several phenotypic properties. The DNA G+C content was 51.3–51.5 mol% and the major isoprenoid quinone was Q-8. On the basis of the data obtained in this study, it is proposed that strains IMCC4489T and IMCC4451 represent a novel species, Reinekea aestuarii sp. nov. The type strain is IMCC4489T (=KCTC 22813T =KCCM 42938T =NBRC 106079T).


2006 ◽  
Vol 56 (4) ◽  
pp. 691-693 ◽  
Author(s):  
Seil Kim ◽  
Hyunyoung Jeong ◽  
Sanggoo Kim ◽  
Jongsik Chun

A Gram-negative, strictly anaerobic, halophilic, motile, sporulating and rod-shaped bacterium, designated strain HY-42-06T, was isolated from tidal flat sediment from Ganghwa Island in South Korea. The isolate produced glycerol, ethanol and CO2 as fermentation end-products from glucose. Strain HY-42-06T grew optimally at 35 °C, pH 7·5 and 3 % (w/v) artificial sea salts. No growth was observed in the absence of sea salts. In phylogenetic analyses based on 16S rRNA gene sequence, strain HY-42-06T showed a distinct phyletic line within the members of cluster I of the order Clostridiales. The closest phylogenetic neighbour to strain HY-42-06T was Clostridium novyi ATCC 17861T (94·91 % 16S rRNA gene sequence similarity). Several phenotypic characters readily differentiate the tidal flat isolate from phylogenetically related clostridia. On the basis of polyphasic evidence, strain HY-42-06T should be classified as a representative of a novel species, for which the name Clostridium ganghwense sp. nov. is proposed. The type strain is HY-42-06T (=IMSNU 40127T=KCTC 5146T=JCM 13193T).


2006 ◽  
Vol 56 (3) ◽  
pp. 653-657 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Jae-Chan Lee ◽  
Sung-Min Song ◽  
Kwang-Yup Kim ◽  
...  

Two moderately halotolerant Gram-negative bacteria were isolated from tidal flat sediment of the South Sea in Korea (the Korea Strait). The strains, designated M9T and M18T, were strictly aerobic, rod-shaped and non-spore-forming and motile with a flagellum and their major fatty acids were C16 : 0 and C19 : 0 cyclo ω8c. Strains M9T and M18T could grow in the presence of up to 13–15 % (w/v) NaCl, but their optimum salt concentrations were relatively low (0–3 %, w/v). The major predominant isoprenoid quinone was Q-8 and the G+C content of the genomic DNA was 57–58 mol%. Phylogenetic analyses and comparative 16S rRNA gene sequence studies revealed that strains M9T and M18T formed a phylogenetic lineage distinct from the genus Teredinibacter within the class Gammaproteobacteria and were most closely related to the genera Microbulbifer, Saccharophagus and Teredinibacter, with less than 92·5 % 16S rRNA gene sequence similarity. The level of 16S rRNA gene sequence similarity between the two strains was 96·7 %. On the basis of physiological and phylogenetic properties, strains M9T and M18T represent separate species within a novel genus of the class Gammaproteobacteria, for which the names Marinimicrobium koreense gen. nov., sp. nov. (type species) and Marinimicrobium agarilyticum sp. nov. are proposed. The type strains of Marinimicrobium koreense and Marinimicrobium agarilyticum are M9T (=KCTC 12356T=DSM 16974T) and M18T (=KCTC 12357T=DSM 16975T), respectively.


2010 ◽  
Vol 60 (1) ◽  
pp. 200-204 ◽  
Author(s):  
Sooyeon Park ◽  
So-Jung Kang ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, non-motile, non-spore-forming bacterial strain, S1-3T, was isolated from a tidal flat sediment on the west coast of Korea and its taxonomic position was investigated. Strain S1-3T grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Strain S1-3T contained MK-7 as the predominant menaquinone and C16 : 1 ω7c and/or iso-C15 : 0 2-OH and iso-C15 : 0 as the major fatty acids. The DNA G+C content was 41.4 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain S1-3T fell within the clade comprising Algoriphagus species, clustering with Algoriphagus halophilus IMSNU 14013T, with which it exhibited 99.6 % 16S rRNA gene sequence similarity. The 16S rRNA gene sequence similarity between strain S1-3T and the type strains of other Algoriphagus species was 94.0–97.1 %. Differential phenotypic properties and phylogenetic and genetic distinctiveness of strain S1-3T demonstrated that this strain is distinguishable from the other Algoriphagus species as well as A. halophilus. On the basis of phenotypic, chemotaxonomic, phylogenetic and genetic data, strain S1-3T is considered to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus lutimaris sp. nov. is proposed. The type strain is S1-3T (=KCTC 22630T =CCUG 57608T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 214-219 ◽  
Author(s):  
Lei Dong ◽  
Hong Ming ◽  
En-Min Zhou ◽  
Yi-Rui Yin ◽  
Lan Liu ◽  
...  

A slightly thermophilic, Gram-staining-negative and strictly aerobic bacteria, designated strain YIM 78141T, was isolated from a sediment sample collected at Hehua hot spring, Tengchong, Yunnan province, south-west China. Cells of the strain were short-rod-shaped and colonies were yellowish and circular. The strain grew at pH 6.0–10.0 (optimum, pH 8.0–9.0) and 10–55 °C (optimum, 40–50 °C). Phylogenetic analyses based on 16S rRNA gene sequence comparison demonstrated that strain YIM 78141T belongs to the family Neisseriaceae , and strain YIM 78141T also showed low levels of 16S rRNA gene sequence similarity (below 93.4 %) with all other genera in this family. The only quinone was ubiquinone 8 and the genomic DNA G+C content was 67.3 mol%. Major fatty acids (>5 %) were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phospholipids of unknown structure containing aminoglycophospholipid and three unidentified polar lipids. On the basis of the morphological, physiological and biochemical characteristics as well as genotypic data, this strain should be classified as a representative of a novel genus and species of the family Neisseriaceae , for which the name Crenobacter luteus gen. nov., sp. nov. is proposed. The type strain is YIM 78141T ( = BCRC 80650T = KCTC 32558T = DSM 27258T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2732-2739 ◽  
Author(s):  
Yang Liu ◽  
Qiuhua Rao ◽  
Jochen Blom ◽  
Qiu Lin ◽  
Tuyan Luo

A Gram-stain-negative, strictly aerobic, motile, rod-shaped bacterium with monopolar flagella, designated as MC042T, was isolated from the profound head ulcers of farmed Murray cod sampled from Zhejiang Province, China. Analysis of its 16S rRNA gene sequence and multilocus sequence analysis phylogeny showed that strain MC042T belonged to the genus Pseudomonas , showing the highest 16S rRNA gene sequence similarity to Pseudomonas juntendi BML3T (98.9 %), and less than 98.8 % similarity to other Pseudomonas species with validly published names. Whole-genome sequencing and phylogenetic reconstruction based on a core set of 1563 Pseudomonas genes further indicated that strain MC042T was most closely related to the clade formed by Pseudomonas protegens CHA0T and Pseudomonas saponiphila DSM 975T and distantly related to any of the validly published species of the genus Pseudomonas . Furthermore, strain MC042T could be distinguished from its closely related species of the genus Pseudomonas by its ability to assimilate maltose, d-xylose and melibiose, but not d-mannitol. The principal fatty acids were C16 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The respiratory quinone was Q-9. Polar lipids of strain MC042T comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified glycolipids, an unidentified lipid, an unknown glycolipid and aminolipid. Based on its phenotypic, chemotaxonomic and phylogenetic features, strain MC042T is considered to represent a novel species, for which the name Pseudomonas piscis sp. nov. is proposed. The type strain is MC042T (=KCTC 72033T=MCCC 1K03575T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1495-1500 ◽  
Author(s):  
Min Wu ◽  
Guiqin Yang ◽  
Zhen Yu ◽  
Li Zhuang ◽  
Yingqiang Jin ◽  
...  

Two Gram-stain-positive, rod-shaped and endospore-forming bacteria, designated WM-1T and WM-4, were isolated from a paddy soil and a forest soil, respectively, in South China. Comparative 16S rRNA gene sequence analyses showed that both strains were members of the genus Oceanobacillus and most closely related to Oceanobacillus chironomi LMG 23627T with pairwise sequence similarity of 96.0 %. The isolates contained menaquinone-7 (MK-7) as the respiratory quinone and anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0 as the major fatty acids (>10 %). Polar lipids consisted of a predominance of diphosphatidylglycerol and moderate to minor amounts of phosphatidylglycerol and phosphatidylinositol. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The DNA G+C content was 38.6–39.2 mol%. The 16S rRNA gene sequence of strain WM-1T displayed 99.7 % similarity to that of strain WM-4, and DNA–DNA hybridization between the two strains showed a relatedness value of 91 %. Based on the results of this polyphasic study, strains WM-1T and WM-4 represent a novel species in the genus Oceanobacillus , for which the name Oceanobacillus luteolus sp. nov. is proposed. The type strain is WM-1T ( = KCTC 33119T = CGMCC 1.12406T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1001-1008 ◽  
Author(s):  
Yuanyuan Tian ◽  
Chuanyu Han ◽  
Jiangmeihui Hu ◽  
Junwei Zhao ◽  
Chen Zhang ◽  
...  

A novel actinomycete, designated strain NEAU-TCZ24T, was isolated from soil and characterized using a polyphasic approach. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that the organism should be assigned to the genus Cellulomonas and formed a stable clade with its closest relatives Cellulomonas terrae JCM 14899T (98.4 % 16S rRNA gene sequence similarity), Cellulomonas xylanilytica JCM 14281T (97.9 %) and Cellulomonas humilata JCM 11945T (97.7 %). The major menaquinones were identified as MK-9(H4) and MK-8(H4). The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositolmannoside, a ninhydrin-positiveglycolipid, an unidentified phosphoglycolipid, an unidentified phospholipid and an unidentified lipid. The major fatty acids were identified as anteiso-C15 : 0, C18 : 1ω9c, C16 : 0 and anteiso-C17 : 0. Moreover, morphological and chemotaxonomic properties of NEAU-TCZ24T also confirmed the affiliation of the isolate to the genus Cellulomonas . However, multilocus sequence analysis based on five other house-keeping genes (gyrB, rpoB, recA, relA and atpD), DNA–DNA relatedness, physiological and biochemical data indicated that NEAU-TCZ24T could be distinguished from its closest relatives. Therefore, it is proposed that NEAU-TCZ24T represents a novel species of the genus Cellulomonas , for which the name Cellulomonas rhizosphaerae sp. nov. is proposed. The type strain is NEAU-TCZ24T (=CCTCC AA 2018042T=JCM 32383T).


Sign in / Sign up

Export Citation Format

Share Document