dna relatedness
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 3)

H-INDEX

47
(FIVE YEARS 2)

Author(s):  
Hisayuki Komaki ◽  
Tomohiko Tamura

We studied the taxonomic relationship between Streptomyces cinnamonensis and Streptomyces virginiae . These type strains shared the same 16S rRNA gene sequence. Phylogenomic analysis supported them being closely related. Digital DNA–DNA relatedness and average nucleotide identity using whole genome sequences indicated that the two species represent the same genomospecies. They shared similar phenotypic characteristics and harboured the same set of secondary metabolite-biosynthetic gene clusters for polyketides and nonribosomal peptides in the genomes. Therefore, according to Rule 24b of the Bacteriological Code, S. cinnamonensis Okami 1952, 572AL (Approved Lists 1980) should be reclassified as a later heterotypic synonym of S. virginiae Grundy et al. 1952, 399AL (Approved Lists 1980) emend. Nouioui et al. 2018. Although 16S rRNA gene sequences were identical among type strains of Streptomyces xanthophaeus , Streptomyces spororaveus and Streptomyces nojiriensis and between those of Streptomyces vinaceus and Streptomyces cirratus , respectively, digital DNA–DNA relatedness indicated that these species are not synonymous.


2020 ◽  
Vol 70 (9) ◽  
pp. 4978-4985 ◽  
Author(s):  
Feilong Chen ◽  
Yao Xu ◽  
Siqi Sun ◽  
Xiaowei Shi ◽  
Aimin Liu ◽  
...  

A halophilic archaeon named strain LR21T was isolated from a salt mine in Yunnan Province, PR China. Cells were spherical, Gram-stain-negative and motile. Strain LR21T grew at 20–50 °C (optimum, 42 °C), with 8–30 % (w/v) NaCl (optimum, 23 %) and at pH 5.5–9.5 (optimum, pH 7.5–8.5). Mg2+ was not required for growth. The major polar lipid profile comprised phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. Strain LR21T had two dissimilar 16S rRNA genes (rrnA and rrnB) and they were closely related to Halomicroarcula limicola YGHS32T, Hma. pellucida BNERC31T and Hma. salina YGHS18T with sequence similarities of 95.3–99.0, 93.0–96.2 and 93.2–95.9 %, respectively, and much lower values to other members. The rpoB′ gene sequence similarities between strain LR21T and Hma. limicola YGHS32T, Hma. pellucida BNERC31T and Hma. salina YGHS18T were 95.2, 91.2 and 91.2 % respectively. The values of average nucleotide identity (ANI) and average amino-acid identity (AAI) between strain LR21T and Hma. limicola YGHS32T, were 89.0 and 90.1 %, respectively. DNA relatedness between strains LR21T and Hma. limicola YGHS32T determined by in silico DNA–DNA hybridization was 36.8 %. Values of ANI and AAI between strain LR21T and other members in the genus Halomicroarcula were far below 95 % and the DNA–DNA relatedness values between strain LR21T and its close relatives were much lower than 70 %, which is far below the boundary for delineation of a new species prokaryote. The DNA G+C content of strain LR21T was 62.0 mol% (genome). The results suggested that strain LR21T represents a novel species of the genus Halomicroarcula , for which the name Halomicroarcula amylolytica sp. nov. is proposed. The type strain is LR21T (=CGMCC 1.13611T=NBRC 113588T).


2020 ◽  
Vol 70 (3) ◽  
pp. 2132-2136 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Kyung-Sook Whang

A Gram-stain-negative bacterium, designated strain PF-30T, was isolated from floodwater of a paddy field in South Korea. Strain PF-30T was found to be a strictly aerobic, motile and pink-pigmented rods which can grow at 25–40 °C (optimum, 28 °C), at pH 5.0–9.0 (optimum pH 7.0) and at salinities of 0.5–3.0 % NaCl (optimum 0.5 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain PF-30T belongs to the genus Elioraea , showing highest sequence similarity to Elioraea tepidiphila TU-7T (97.1%) and less than 91.3 % similarity with other members of the family Acetobacteraceae . The average nucleotide identity (ANI) and DNA–DNA relatedness between the strain PF-30T and E. tepidiphila TU-7T yielded an ANI value of 75.1 % and DNA–DNA relatedness of 11.7±0.7 %, respectively. The major fatty acids were identified as C18 : 0 and C18 : 1 ω7c. The predominant respiratory quinone was identified as Q-10. The DNA G+C content was determined to be 69.9 mol%. The strain PF-30T was observed to produce plant-growth-promoting materials such as indole-3-acetic acid (IAA), siderophore and phytase. On the basis of the results from phylogenetic, chemotaxonomic and phenotypic data, we concluded that strain PF-30T represents a novel species of the genus Elioraea , for which the name Elioraea rosea sp. nov. is proposed. The type strain is PF-30T (=KACC 19985T=NBRC 113984T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3878-3884 ◽  
Author(s):  
Akira Nakamura

Strain 43PT was isolated as an l-glucose-utilizing bacterium from soil in Japan. Cells of the strain were Gram-stain-negative, aerobic and non-motile cocci. The 16S rRNA gene sequence of the strain showed high similarity to that of Paracoccus limosus (98.5 %). Phylogenetic analyses based on 16S rRNA gene sequences revealed that this strain belongs to the genus Paracoccus. Strain 43PT contained Q-10 as the sole isoprenoid quinone. The major cellular fatty acids were C18 : 1ω7c or C18 : 1ω6c and C16 : 0, and C18 : 0, C18 : 1ω9c, C10 : 0 3-OH and summed feature 2 were detected as minor components. The DNA G+C content of strain 43PT was 64.1 mol%. Strain 43PT contained the major polar lipids phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unknown aminolipid and two unknown glycolipids. The DNA–DNA relatedness between strain 43PT and the six related type strains of the genus Paracoccus, including P. limosus, was below 23 %. Based on the chemotaxonomic and physiological data and the values of DNA–DNA relatedness, especially the ability to assimilate l-glucose, this strain should be classified as a representative of a novel species of the genus Paracoccus, for which the name Paracoccus laeviglucosivorans sp. nov. (type strain 43PT = JCM 30587T = DSM 100094T) is proposed.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4080-4086 ◽  
Author(s):  
Ngoc-Lan Nguyen ◽  
Yeon-Ju Kim ◽  
Van-An Hoang ◽  
Jong-Pyo Kang ◽  
Priyanka Singh ◽  
...  

A novel bacterium, designated DCY95T, was isolated from ginseng-cultivated soil in Quang Nam province, Vietnam. On the basis of 16S rRNA and gyrB gene sequence analysis, this isolate was assigned to the genus Paenibacillus and found to be closely related to Paenibacillus sacheonensis SY01T (97.1 % 16S rRNA gene sequence similarity) and Paenibacillus taihuensis THMBG22T (96.4 %). The partial gyrB gene of DCY95T possessed 69.6–83.9 % sequence identity to those of other members of the genus Paenibacillus. Strain DCY95T was Gram-reaction-negative, catalase-negative, oxidase-positive, strictly aerobic, rod-shaped and motile by means of peritrichous flagella. Ellipsoidal free spores or subterminal endospores were produced in sporangia. MK-7 was the diagnostic menaquinone. The cell-wall peptidoglycan contained meso-diamonopimelic acid as the diamino acid. Whole-cell sugars comprised ribose, mannose and glucose. The major cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminophospholipids, and two unidentified phospholipids. The genomic DNA G+C content was 60.7 ± 0.9 mol%. Phenotypic and chemotaxonomic results placed strain DCY95T within the genus Paenibacillus. However, DNA–DNA relatedness values between strain DCY95T and P. sacheonensis KACC 14895T or P. taihuensis NBRC 108766T were lower than 36 %. The low DNA relatedness data in combination with phylogenetic and (GTG)5-PCR analyses, as well as biochemical tests, indicated that strain DCY95T could not be assigned to any recognized species. In conclusion, the results in this study support the classification of strain DCY95T as a representative of a novel species within the genus Paenibacillus, for which the name Paenibacillus panaciterrae is proposed. The type strain is DCY95T ( = KCTC 33581T = DSM 29477T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4066-4071 ◽  
Author(s):  
Bo Liu ◽  
Guo-Hong Liu ◽  
Cetin Sengonca ◽  
Peter Schumann ◽  
Ci-Bin Ge ◽  
...  

A novel Gram-stain-positive, endospore-forming bacterium, designated strain FJAT-18043T, was isolated from a soil sample of a potato field in Xinjiang Autonomous Region, China. Cells were rods that were catalase-positive and motile by peritrichous flagella. The strain grew at 20–45 °C (optimum 35 °C), at pH 6.0–10.0 (optimum pH 9) and with 0–10 % (w/v) NaCl (optimum 0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FJAT-18043T belonged to the genus Bacillus and exhibited similarities of 97.7, 97.6, 97.2 and 97.2 % with Bacillus eiseniae A1-2T, Bacillus horneckiae DSM 23495T, Bacillus gottheilii WCC 4585T and Bacillus purgationiresistens DS22T, respectively. DNA–DNA relatedness between strain FJAT-18043T and B. eiseniae A1-2 T was lower than 70 % (36.1 %). The menaquinone was identified as MK-7 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids detected were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0, C16 : 0 and iso-C14 : 0. The DNA G+C content was 48.8 mol%. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate FJAT-18043T represents a novel species within the genus Bacillus, for which the name Bacillus solani sp. nov. is proposed. The type strain is FJAT-18043T ( = DSM 29501T = CCTCC AB 2014277T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3944-3949 ◽  
Author(s):  
Ayaka Nishida ◽  
Hirokuni Miyamoto ◽  
Sankichi Horiuchi ◽  
Ryo Watanabe ◽  
Hidetoshi Morita ◽  
...  

A taxonomic study was performed on 15 bacterial isolates from the caeca of gnotobiotic mice that had been fed with thermophile-fermented compost. The 15 isolates were thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming bacteria, and were most closely related to Bacillus thermoamylovorans CNCM I-1378T. The 16S rRNA gene sequence of strain N-11T, selected as representative of this new group, showed a similarity of 99.4 % with Bacillus thermoamylovorans CNCM I-1378T, 94.7 % with Bacillus thermolactis R-6488T, and 94.4 % with Bacillus kokeshiiformis MO-04T. The isolates were then classified into two distinct groups based on a (GTG)5-fingerprint analysis. Two isolates, N-11T and N-21, were the representatives of these two groups, respectively.` The N-11T and N-21 isolates showed 66–71 % DNA–DNA relatedness with one other, but had less than 37 % DNA–DNA relatedness with B. thermoamylovorans LMG 18084T. The other 13 isolates showed DNA–DNA relatedness values above 74 % with the N-11T isolate. All 15 isolates grew at 25–60 °C (optimum 50 °C), pH 6–8 (optimum pH 7) and were capable of growing on a medium containing 6 % (w/v) NaCl (optimum 0.5 %). The 15 isolates could be distinguished from B. thermoamylovorans LMG 18084T because they showed Tween 80 hydrolysis activity and did not produce acid from melibiose. The major fatty acids were anteiso-C15 : 0, C16 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and several unidentified phospholipids. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The menaquinone was MK-7. The DNA G+C content was 37.9 mol%. Based on the phenotypic properties, the 15 strains represent a novel species of the genus Bacillus, for which the name Bacillus hisashii sp. nov. is proposed. The type strain is N-11T ( = NRBC 110226T = LMG 28201T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3558-3563 ◽  
Author(s):  
Ya Jie Zhu ◽  
Jun Kun Lu ◽  
Ying Long Chen ◽  
Sheng Kun Wang ◽  
Xin Hua Sui ◽  
...  

Three novel strains, RITF741T, RITF1220 and RITF909, isolated from root nodules of Acacia melanoxylon in Guangdong Province of China, have been previously identified as members of the genus Mesorhizobium, displaying the same 16S rRNA gene RFLP pattern. Phylogenetic analysis of 16S rRNA gene sequences indicated that the three strains belong to the genus Mesorhizobium and had highest similarity (100.0 %) to Mesorhizobium plurifarium LMG 11892T. Phylogenetic analyses of housekeeping genes recA, atpD and glnII revealed that these strains represented a distinct evolutionary lineage within the genus Mesorhizobium. Strain RITF741T showed >73 % DNA–DNA relatedness with strains RITF1220 and RITF909, but < 60 % DNA–DNA relatedness with the closest type strains of recognized species of the genus Mesorhizobium. They differed from each other and from their closest phylogenetic neighbours by presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon sources based on API 50CH and API 20NE tests. The three strains were able to form nodules with the original host Acacia melanoxylon and other woody legumes such as Acacia aneura, Albizia falcataria and Leucaena leucocephala. In conclusion, these strains represent a novel species belonging to the genus Mesorhizobium based on the data obtained in the present and previous studies, for which the name Mesorhizobium acaciae sp. nov. is proposed. The type strain is RITF741T ( = CCBAU 101090T = JCM 30534T), the DNA G+C content of which is 64.1 mol% (T m).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3447-3450 ◽  
Author(s):  
Kouta Hatayama ◽  
Teruaki Kuno

A bacterial strain, designated MSd3T, was isolated from a freshwater sample collected from the Hosoda River in Japan. The cells of strain MSd3T were Gram-stain-negative, non-spore-forming, aerobic, non-motile, curved rods forming rings, coils and undulating filaments. The 16S rRNA gene sequence of strain MSd3T showed closest similarity to that of Spirosoma linguale DSM 74T (97.6 % similarity) and similarity to other members of the genus Spirosoma ranged from 90.3 to 95.9 %. Strain MSd3T contained menaquinone 7 as the sole respiratory quinone. The major cellular fatty acids were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C16 : 1ω5c. The polar lipids were phosphatidylethanolamine, three unidentified aminophospholipids and three unidentified polar lipids. The DNA G+C content was 53.3 mol%. The DNA–DNA relatedness between strain MSd3T and S. linguale DSM 74T was 19 % or 25 % (reciprocal value). From the chemotaxonomic and physiological data and the levels of DNA–DNA relatedness, strain MSd3T should be classified as the representative of a novel species of the genus Spirosoma, for which the name Spirosoma fluviale sp. nov. (type strain MSd3T = JCM 30659T = DSM 29961T) is proposed.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2931-2936 ◽  
Author(s):  
Xiao-Xia Zhang ◽  
Ju-Sheng Gao ◽  
Yan-Hua Cao ◽  
Rizwan Ali Sheirdil ◽  
Xiu-Cheng Wang ◽  
...  

Bacterial strains ZYY136T and ZYY9 were isolated from surface-sterilized rice roots from a long-term experiment of rice–rice–Astragalus sinicus rotation. The 16S rRNA gene sequences of strains ZYY136T and ZYY9 showed the highest similarity, of 97.0  %, to Rhizobium tarimense PL-41T. Sequence analysis of the housekeeping genes recA, thrC and atpD clearly differentiated the isolates from currently described species of the genus Rhizobium. The DNA–DNA relatedness value between ZYY136T and ZYY9 was 82.3  %, and ZYY136T showed 34.0  % DNA–DNA relatedness with the most closely related type strain, R. tarimense PL-41T. The DNA G+C content of strain ZYY136T was 58.1 mol%. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and C16 : 0 3-OH. Strains ZYY136T and ZYY9 could be differentiated from the previously defined species of the genus Rhizobium by several phenotypic characteristics. Therefore, we conclude that strains ZYY136T and ZYY9 represent a novel species of the genus Rhizobium, for which the name Rhizobium oryzicola sp. nov. is proposed (type strain ZYY136T = ACCC 05753T = KCTC 32088T).


Sign in / Sign up

Export Citation Format

Share Document